Matches in SemOpenAlex for { <https://semopenalex.org/work/W1519286527> ?p ?o ?g. }
- W1519286527 endingPage "2109" @default.
- W1519286527 startingPage "2090" @default.
- W1519286527 abstract "The growth-optimal portfolio is designed to have maximum expected log return over the next rebalancing period. Thus, it can be computed with relative ease by solving a static optimization problem. The growth-optimal portfolio has sparked fascination among finance professionals and researchers because it can be shown to outperform any other portfolio with probability 1 in the long run. In the short run, however, it is notoriously volatile. Moreover, its computation requires precise knowledge of the asset return distribution, which is not directly observable but must be inferred from sparse data. By using methods from distributionally robust optimization, we design fixed-mix strategies that offer similar performance guarantees as the growth-optimal portfolio but for a finite investment horizon and for a whole family of distributions that share the same first- and second-order moments. We demonstrate that the resulting robust growth-optimal portfolios can be computed efficiently by solving a tractable conic program whose size is independent of the length of the investment horizon. Simulated and empirical backtests show that the robust growth-optimal portfolios are competitive with the classical growth-optimal portfolio across most realistic investment horizons and for an overwhelming majority of contaminated return distributions. This paper was accepted by Yinyu Ye, optimization." @default.
- W1519286527 created "2016-06-24" @default.
- W1519286527 creator A5055449051 @default.
- W1519286527 creator A5065780980 @default.
- W1519286527 creator A5082153534 @default.
- W1519286527 date "2016-07-01" @default.
- W1519286527 modified "2023-10-18" @default.
- W1519286527 title "Robust Growth-Optimal Portfolios" @default.
- W1519286527 cites W1509805685 @default.
- W1519286527 cites W1556730504 @default.
- W1519286527 cites W1945509387 @default.
- W1519286527 cites W1968355947 @default.
- W1519286527 cites W1971432209 @default.
- W1519286527 cites W1980314087 @default.
- W1519286527 cites W1998052780 @default.
- W1519286527 cites W1998473557 @default.
- W1519286527 cites W2000415208 @default.
- W1519286527 cites W2000564471 @default.
- W1519286527 cites W2001202328 @default.
- W1519286527 cites W2017187882 @default.
- W1519286527 cites W2019291268 @default.
- W1519286527 cites W2021472931 @default.
- W1519286527 cites W2034489173 @default.
- W1519286527 cites W2040759104 @default.
- W1519286527 cites W2058282539 @default.
- W1519286527 cites W2067477904 @default.
- W1519286527 cites W2068689926 @default.
- W1519286527 cites W2092660864 @default.
- W1519286527 cites W2099111195 @default.
- W1519286527 cites W2111435163 @default.
- W1519286527 cites W2119303899 @default.
- W1519286527 cites W2120553521 @default.
- W1519286527 cites W2125417745 @default.
- W1519286527 cites W2125520394 @default.
- W1519286527 cites W2131868098 @default.
- W1519286527 cites W2136914524 @default.
- W1519286527 cites W2142554847 @default.
- W1519286527 cites W2143532160 @default.
- W1519286527 cites W2156168813 @default.
- W1519286527 cites W2156844203 @default.
- W1519286527 cites W2160631057 @default.
- W1519286527 cites W2163969674 @default.
- W1519286527 cites W2164811216 @default.
- W1519286527 cites W2164883547 @default.
- W1519286527 cites W2492040751 @default.
- W1519286527 cites W2503850115 @default.
- W1519286527 cites W2536620281 @default.
- W1519286527 cites W2596656925 @default.
- W1519286527 cites W3015581296 @default.
- W1519286527 cites W3122275628 @default.
- W1519286527 cites W3123065893 @default.
- W1519286527 cites W3125138878 @default.
- W1519286527 cites W3125435015 @default.
- W1519286527 cites W4237883889 @default.
- W1519286527 cites W4239488419 @default.
- W1519286527 doi "https://doi.org/10.1287/mnsc.2015.2228" @default.
- W1519286527 hasPublicationYear "2016" @default.
- W1519286527 type Work @default.
- W1519286527 sameAs 1519286527 @default.
- W1519286527 citedByCount "40" @default.
- W1519286527 countsByYear W15192865272016 @default.
- W1519286527 countsByYear W15192865272017 @default.
- W1519286527 countsByYear W15192865272018 @default.
- W1519286527 countsByYear W15192865272019 @default.
- W1519286527 countsByYear W15192865272020 @default.
- W1519286527 countsByYear W15192865272021 @default.
- W1519286527 countsByYear W15192865272022 @default.
- W1519286527 countsByYear W15192865272023 @default.
- W1519286527 crossrefType "journal-article" @default.
- W1519286527 hasAuthorship W1519286527A5055449051 @default.
- W1519286527 hasAuthorship W1519286527A5065780980 @default.
- W1519286527 hasAuthorship W1519286527A5082153534 @default.
- W1519286527 hasBestOaLocation W15192865272 @default.
- W1519286527 hasConcept C10138342 @default.
- W1519286527 hasConcept C103144560 @default.
- W1519286527 hasConcept C11413529 @default.
- W1519286527 hasConcept C126255220 @default.
- W1519286527 hasConcept C149782125 @default.
- W1519286527 hasConcept C154611145 @default.
- W1519286527 hasConcept C159176650 @default.
- W1519286527 hasConcept C162324750 @default.
- W1519286527 hasConcept C183582576 @default.
- W1519286527 hasConcept C193254401 @default.
- W1519286527 hasConcept C202655437 @default.
- W1519286527 hasConcept C21099588 @default.
- W1519286527 hasConcept C2524010 @default.
- W1519286527 hasConcept C2780821815 @default.
- W1519286527 hasConcept C28761237 @default.
- W1519286527 hasConcept C33923547 @default.
- W1519286527 hasConcept C41008148 @default.
- W1519286527 hasConcept C45374587 @default.
- W1519286527 hasConcept C51485801 @default.
- W1519286527 hasConcept C77913304 @default.
- W1519286527 hasConcept C9725762 @default.
- W1519286527 hasConceptScore W1519286527C10138342 @default.
- W1519286527 hasConceptScore W1519286527C103144560 @default.
- W1519286527 hasConceptScore W1519286527C11413529 @default.
- W1519286527 hasConceptScore W1519286527C126255220 @default.