Matches in SemOpenAlex for { <https://semopenalex.org/work/W1519461837> ?p ?o ?g. }
- W1519461837 endingPage "e0127514" @default.
- W1519461837 startingPage "e0127514" @default.
- W1519461837 abstract "Accurate estimation of diffuse attenuation coefficients in the visible wavelengths Kd(λ) from remotely sensed data is particularly challenging in global oceanic and coastal waters. The objectives of the present study are to evaluate the applicability of a semi-analytical Kd(λ) retrieval model (SAKM) and Jamet's neural network model (JNNM), and then develop a new neural network Kd(λ) retrieval model (NNKM). Based on the comparison of Kd(λ) predicted by these models with in situ measurements taken from the global oceanic and coastal waters, all of the NNKM, SAKM, and JNNM models work well in Kd(λ) retrievals, but the NNKM model works more stable and accurate than both SAKM and JNNM models. The near-infrared band-based and shortwave infrared band-based combined model is used to remove the atmospheric effects on MODIS data. The Kd(λ) data was determined from the atmospheric corrected MODIS data using the NNKM, JNNM, and SAKM models. The results show that the NNKM model produces <30% uncertainty in deriving Kd(λ) from global oceanic and coastal waters, which is 4.88-17.18% more accurate than SAKM and JNNM models. Furthermore, we employ an empirical approach to calculate Kpar from the NNKM model-derived diffuse attenuation coefficient at visible bands (443, 488, 555, and 667 nm). The results show that our model presents a satisfactory performance in deriving Kpar from the global oceanic and coastal waters with 20.2% uncertainty. The Kpar are quantified from MODIS data atmospheric correction using our model. Comparing with field measurements, our model produces ~31.0% uncertainty in deriving Kpar from Bohai Sea. Finally, the applicability of our model for general oceanographic studies is briefly illuminated by applying it to climatological monthly mean remote sensing reflectance for time ranging from July, 2002- July 2014 at the global scale. The results indicate that the high Kd(λ) and Kpar values are usually found around the coastal zones in the high latitude regions, while low Kd(λ) and Kpar values are usually found in the open oceans around the low-latitude regions. These results could improve our knowledge about the light field under waters at either the global or basin scales, and be potentially used into general circulation models to estimate the heat flux between atmosphere and ocean." @default.
- W1519461837 created "2016-06-24" @default.
- W1519461837 creator A5011073806 @default.
- W1519461837 creator A5026812279 @default.
- W1519461837 creator A5030113301 @default.
- W1519461837 creator A5033710811 @default.
- W1519461837 creator A5081462405 @default.
- W1519461837 creator A5082680632 @default.
- W1519461837 date "2015-06-17" @default.
- W1519461837 modified "2023-10-14" @default.
- W1519461837 title "A Neural Network Model for K(λ) Retrieval and Application to Global Kpar Monitoring" @default.
- W1519461837 cites W1487623568 @default.
- W1519461837 cites W1552578991 @default.
- W1519461837 cites W1969753304 @default.
- W1519461837 cites W1971843227 @default.
- W1519461837 cites W1972928352 @default.
- W1519461837 cites W1975285091 @default.
- W1519461837 cites W1977912557 @default.
- W1519461837 cites W1981927454 @default.
- W1519461837 cites W1987707266 @default.
- W1519461837 cites W1991587371 @default.
- W1519461837 cites W1995508978 @default.
- W1519461837 cites W2008557550 @default.
- W1519461837 cites W2010917519 @default.
- W1519461837 cites W2035697443 @default.
- W1519461837 cites W2041158780 @default.
- W1519461837 cites W2060406211 @default.
- W1519461837 cites W2060826597 @default.
- W1519461837 cites W2066751685 @default.
- W1519461837 cites W2068264690 @default.
- W1519461837 cites W2077769416 @default.
- W1519461837 cites W2078554852 @default.
- W1519461837 cites W2079274560 @default.
- W1519461837 cites W2087148554 @default.
- W1519461837 cites W2088665921 @default.
- W1519461837 cites W2092135449 @default.
- W1519461837 cites W2093409046 @default.
- W1519461837 cites W2102390174 @default.
- W1519461837 cites W2107027078 @default.
- W1519461837 cites W2121226477 @default.
- W1519461837 cites W2126162946 @default.
- W1519461837 cites W2128968708 @default.
- W1519461837 cites W2139095875 @default.
- W1519461837 cites W2144948431 @default.
- W1519461837 cites W2168742891 @default.
- W1519461837 cites W2170934235 @default.
- W1519461837 cites W2172000614 @default.
- W1519461837 cites W2333401475 @default.
- W1519461837 cites W4205103012 @default.
- W1519461837 doi "https://doi.org/10.1371/journal.pone.0127514" @default.
- W1519461837 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4471105" @default.
- W1519461837 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26083341" @default.
- W1519461837 hasPublicationYear "2015" @default.
- W1519461837 type Work @default.
- W1519461837 sameAs 1519461837 @default.
- W1519461837 citedByCount "6" @default.
- W1519461837 countsByYear W15194618372017 @default.
- W1519461837 countsByYear W15194618372018 @default.
- W1519461837 countsByYear W15194618372019 @default.
- W1519461837 countsByYear W15194618372021 @default.
- W1519461837 countsByYear W15194618372022 @default.
- W1519461837 crossrefType "journal-article" @default.
- W1519461837 hasAuthorship W1519461837A5011073806 @default.
- W1519461837 hasAuthorship W1519461837A5026812279 @default.
- W1519461837 hasAuthorship W1519461837A5030113301 @default.
- W1519461837 hasAuthorship W1519461837A5033710811 @default.
- W1519461837 hasAuthorship W1519461837A5081462405 @default.
- W1519461837 hasAuthorship W1519461837A5082680632 @default.
- W1519461837 hasBestOaLocation W15194618371 @default.
- W1519461837 hasConcept C108597893 @default.
- W1519461837 hasConcept C120665830 @default.
- W1519461837 hasConcept C121332964 @default.
- W1519461837 hasConcept C127313418 @default.
- W1519461837 hasConcept C153294291 @default.
- W1519461837 hasConcept C154945302 @default.
- W1519461837 hasConcept C159774933 @default.
- W1519461837 hasConcept C184652730 @default.
- W1519461837 hasConcept C2776272892 @default.
- W1519461837 hasConcept C2778329001 @default.
- W1519461837 hasConcept C39432304 @default.
- W1519461837 hasConcept C41008148 @default.
- W1519461837 hasConcept C50644808 @default.
- W1519461837 hasConcept C62649853 @default.
- W1519461837 hasConcept C74902906 @default.
- W1519461837 hasConceptScore W1519461837C108597893 @default.
- W1519461837 hasConceptScore W1519461837C120665830 @default.
- W1519461837 hasConceptScore W1519461837C121332964 @default.
- W1519461837 hasConceptScore W1519461837C127313418 @default.
- W1519461837 hasConceptScore W1519461837C153294291 @default.
- W1519461837 hasConceptScore W1519461837C154945302 @default.
- W1519461837 hasConceptScore W1519461837C159774933 @default.
- W1519461837 hasConceptScore W1519461837C184652730 @default.
- W1519461837 hasConceptScore W1519461837C2776272892 @default.
- W1519461837 hasConceptScore W1519461837C2778329001 @default.
- W1519461837 hasConceptScore W1519461837C39432304 @default.
- W1519461837 hasConceptScore W1519461837C41008148 @default.
- W1519461837 hasConceptScore W1519461837C50644808 @default.
- W1519461837 hasConceptScore W1519461837C62649853 @default.