Matches in SemOpenAlex for { <https://semopenalex.org/work/W1519462607> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W1519462607 endingPage "166" @default.
- W1519462607 startingPage "156" @default.
- W1519462607 abstract "A major part of the medical knowledge concerns diseases that are uncommon or even rare. The uncommon nature of these disorders renders it impossible to collect data of a sufficiently large number of patients to develop machine-learning models that faithfully reflect the subtleties of the domain. An alternative is to develop a Bayesian network with the help of clinical experts. Lack of data is then compensated for by eliciting the structure with its associated local probability distributions from the experts. The resulting network can be subsequently evaluated using the available dataset. One may also consider adopting very strong independence assumptions, such as in naive Bayesian models. Normally not all subtleties of the interactions among the variables in the domain are reflected in such models. Yet, a relatively small dataset suffices to obtain an acceptably accurate model. This paper explores the trade-offs between modelling using expert knowledge, and machine learning using a small clinical dataset in the context of Bayesian networks." @default.
- W1519462607 created "2016-06-24" @default.
- W1519462607 creator A5007761892 @default.
- W1519462607 date "2001-01-01" @default.
- W1519462607 modified "2023-09-27" @default.
- W1519462607 title "Expert Knowledge and Its Role in Learning Bayesian Networks in Medicine: An Appraisal" @default.
- W1519462607 cites W1817561967 @default.
- W1519462607 cites W2140785063 @default.
- W1519462607 cites W2149673191 @default.
- W1519462607 cites W2169523351 @default.
- W1519462607 doi "https://doi.org/10.1007/3-540-48229-6_24" @default.
- W1519462607 hasPublicationYear "2001" @default.
- W1519462607 type Work @default.
- W1519462607 sameAs 1519462607 @default.
- W1519462607 citedByCount "12" @default.
- W1519462607 countsByYear W15194626072013 @default.
- W1519462607 countsByYear W15194626072014 @default.
- W1519462607 countsByYear W15194626072016 @default.
- W1519462607 countsByYear W15194626072020 @default.
- W1519462607 countsByYear W15194626072023 @default.
- W1519462607 crossrefType "book-chapter" @default.
- W1519462607 hasAuthorship W1519462607A5007761892 @default.
- W1519462607 hasConcept C105002631 @default.
- W1519462607 hasConcept C105795698 @default.
- W1519462607 hasConcept C107673813 @default.
- W1519462607 hasConcept C119857082 @default.
- W1519462607 hasConcept C134306372 @default.
- W1519462607 hasConcept C151730666 @default.
- W1519462607 hasConcept C154945302 @default.
- W1519462607 hasConcept C207685749 @default.
- W1519462607 hasConcept C2522767166 @default.
- W1519462607 hasConcept C2779343474 @default.
- W1519462607 hasConcept C33724603 @default.
- W1519462607 hasConcept C33923547 @default.
- W1519462607 hasConcept C35651441 @default.
- W1519462607 hasConcept C36503486 @default.
- W1519462607 hasConcept C41008148 @default.
- W1519462607 hasConcept C58328972 @default.
- W1519462607 hasConcept C86803240 @default.
- W1519462607 hasConceptScore W1519462607C105002631 @default.
- W1519462607 hasConceptScore W1519462607C105795698 @default.
- W1519462607 hasConceptScore W1519462607C107673813 @default.
- W1519462607 hasConceptScore W1519462607C119857082 @default.
- W1519462607 hasConceptScore W1519462607C134306372 @default.
- W1519462607 hasConceptScore W1519462607C151730666 @default.
- W1519462607 hasConceptScore W1519462607C154945302 @default.
- W1519462607 hasConceptScore W1519462607C207685749 @default.
- W1519462607 hasConceptScore W1519462607C2522767166 @default.
- W1519462607 hasConceptScore W1519462607C2779343474 @default.
- W1519462607 hasConceptScore W1519462607C33724603 @default.
- W1519462607 hasConceptScore W1519462607C33923547 @default.
- W1519462607 hasConceptScore W1519462607C35651441 @default.
- W1519462607 hasConceptScore W1519462607C36503486 @default.
- W1519462607 hasConceptScore W1519462607C41008148 @default.
- W1519462607 hasConceptScore W1519462607C58328972 @default.
- W1519462607 hasConceptScore W1519462607C86803240 @default.
- W1519462607 hasLocation W15194626071 @default.
- W1519462607 hasOpenAccess W1519462607 @default.
- W1519462607 hasPrimaryLocation W15194626071 @default.
- W1519462607 hasRelatedWork W1523252224 @default.
- W1519462607 hasRelatedWork W1607095152 @default.
- W1519462607 hasRelatedWork W1835631667 @default.
- W1519462607 hasRelatedWork W2021246439 @default.
- W1519462607 hasRelatedWork W2157961999 @default.
- W1519462607 hasRelatedWork W2295405411 @default.
- W1519462607 hasRelatedWork W2529914695 @default.
- W1519462607 hasRelatedWork W4233740278 @default.
- W1519462607 hasRelatedWork W876317597 @default.
- W1519462607 hasRelatedWork W9567558 @default.
- W1519462607 isParatext "false" @default.
- W1519462607 isRetracted "false" @default.
- W1519462607 magId "1519462607" @default.
- W1519462607 workType "book-chapter" @default.