Matches in SemOpenAlex for { <https://semopenalex.org/work/W1519500192> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W1519500192 abstract "The complexity of geometric algorithms depend largely upon the complexity of the geometric objects they manipulate. In this thesis we consider Euclidean graphs and polyhedra, which have applications in robotics, motion planning, and circuit design. We focus on constructing simpler approximations of these objects. Thus problems involving these objects become more tractable, though perhaps at the expense of suboptimality of solutions. Some of our approximation schemes are successful, and lead to efficient solutions to many problems. In others, we prove that the schemes are themselves too complex to be practically feasible. Our results highlight many combinatorial and geometric properties of the objects considered.Our results can be divided into two broad categories. First we consider the problem of approximating dense Euclidean graphs by sparse subgraphs, where the subgraph either has few edges, or their total edge lengths are small, or both. Furthermore between any two vertices, the shortest path in the subgraph should be almost as short as the original shortest path. We prove that various planar subgraphs of the complete Euclidean graph on the plane approximate original shortest paths within a constant factor. We then show that even for graphs with arbitrary edge weights, sparse subgraphs exist with this property. Some of our results are shown to be optimal.Next, we consider the problem of approximating polyhedra. In particular, given a collection of pairwise disjoint polyhedra and their spatial positions in space, we are required to cover each with a polyhedral hull such that the hulls are pairwise disjoint, and the number of vertices (or edges, or faces) of the hulls is minimized. The motivation is, by replacing original polyhedra with their hulls, their descriptions get reduced, which speeds up further processing. We prove that the two and three dimensional versions of this problem are NP-hard (even for only two polyhedra in three dimensions), but provide several exact and approximation algorithms for the more restricted rectilinear two dimensional problem." @default.
- W1519500192 created "2016-06-24" @default.
- W1519500192 creator A5081800187 @default.
- W1519500192 creator A5088556062 @default.
- W1519500192 date "1990-01-01" @default.
- W1519500192 modified "2023-09-27" @default.
- W1519500192 title "Approximation schemes in computational geometry" @default.
- W1519500192 hasPublicationYear "1990" @default.
- W1519500192 type Work @default.
- W1519500192 sameAs 1519500192 @default.
- W1519500192 citedByCount "8" @default.
- W1519500192 countsByYear W15195001922019 @default.
- W1519500192 crossrefType "journal-article" @default.
- W1519500192 hasAuthorship W1519500192A5081800187 @default.
- W1519500192 hasAuthorship W1519500192A5088556062 @default.
- W1519500192 hasConcept C105795698 @default.
- W1519500192 hasConcept C11413529 @default.
- W1519500192 hasConcept C114614502 @default.
- W1519500192 hasConcept C118615104 @default.
- W1519500192 hasConcept C129782007 @default.
- W1519500192 hasConcept C132525143 @default.
- W1519500192 hasConcept C148764684 @default.
- W1519500192 hasConcept C184898388 @default.
- W1519500192 hasConcept C186450821 @default.
- W1519500192 hasConcept C22590252 @default.
- W1519500192 hasConcept C2524010 @default.
- W1519500192 hasConcept C29123130 @default.
- W1519500192 hasConcept C33923547 @default.
- W1519500192 hasConcept C45340560 @default.
- W1519500192 hasConcept C54829058 @default.
- W1519500192 hasConceptScore W1519500192C105795698 @default.
- W1519500192 hasConceptScore W1519500192C11413529 @default.
- W1519500192 hasConceptScore W1519500192C114614502 @default.
- W1519500192 hasConceptScore W1519500192C118615104 @default.
- W1519500192 hasConceptScore W1519500192C129782007 @default.
- W1519500192 hasConceptScore W1519500192C132525143 @default.
- W1519500192 hasConceptScore W1519500192C148764684 @default.
- W1519500192 hasConceptScore W1519500192C184898388 @default.
- W1519500192 hasConceptScore W1519500192C186450821 @default.
- W1519500192 hasConceptScore W1519500192C22590252 @default.
- W1519500192 hasConceptScore W1519500192C2524010 @default.
- W1519500192 hasConceptScore W1519500192C29123130 @default.
- W1519500192 hasConceptScore W1519500192C33923547 @default.
- W1519500192 hasConceptScore W1519500192C45340560 @default.
- W1519500192 hasConceptScore W1519500192C54829058 @default.
- W1519500192 hasLocation W15195001921 @default.
- W1519500192 hasOpenAccess W1519500192 @default.
- W1519500192 hasPrimaryLocation W15195001921 @default.
- W1519500192 hasRelatedWork W1569214028 @default.
- W1519500192 hasRelatedWork W1569811863 @default.
- W1519500192 hasRelatedWork W1581442026 @default.
- W1519500192 hasRelatedWork W1813896049 @default.
- W1519500192 hasRelatedWork W1932337349 @default.
- W1519500192 hasRelatedWork W2011039300 @default.
- W1519500192 hasRelatedWork W2017400043 @default.
- W1519500192 hasRelatedWork W2022266599 @default.
- W1519500192 hasRelatedWork W2040924621 @default.
- W1519500192 hasRelatedWork W2043553510 @default.
- W1519500192 hasRelatedWork W2058010643 @default.
- W1519500192 hasRelatedWork W2100823012 @default.
- W1519500192 hasRelatedWork W2120621329 @default.
- W1519500192 hasRelatedWork W2129889866 @default.
- W1519500192 hasRelatedWork W2157274506 @default.
- W1519500192 hasRelatedWork W2163322487 @default.
- W1519500192 hasRelatedWork W2752885492 @default.
- W1519500192 hasRelatedWork W2950798640 @default.
- W1519500192 hasRelatedWork W3122481131 @default.
- W1519500192 hasRelatedWork W76808627 @default.
- W1519500192 isParatext "false" @default.
- W1519500192 isRetracted "false" @default.
- W1519500192 magId "1519500192" @default.
- W1519500192 workType "article" @default.