Matches in SemOpenAlex for { <https://semopenalex.org/work/W1520005877> ?p ?o ?g. }
- W1520005877 abstract "It was about 125 years ago that the light bulb was commercialized by Thomas Edison. No doubt a brilliant invention at the time, today its low power conversion efficiency is one of the reasons why lighting in the western world has such high energy consumption. Thus, the potential for saving energy is enormous in this area. The introduction of halogen, discharge and fluorescent lamps has lead to certain efficiency improvements, however more than half of the energy is still lost as heat. Light-emitting diodes (LEDs) are very promising candidates for high efficiency light sources, with modern devices showing internal quantum efficiencies of virtually 100 %. However, due to the high refractive index of the commonly used semiconductor materials it is very difficult to have a large extraction efficiency; in a standard cubic geometry most of the internally emitted light is trapped inside the device due to total internal reflection. Several methods have been developed in order to circumvent this problem, either by optimizing the device geometry in order to increase the escape cone or by incorporating a resonant structure in order to force the internal emission into the existing escape cone. The latter approach is called microcavity LED (MCLED) or resonant cavity LED (RCLED). In a MCLED the spontaneous internal emission is controlled by placing the emitter inside an optical cavity with a thickness of the order of its emitting wavelength. The resulting interference effects increase the part of the emission that can be extracted. Contrary to the other approaches this is possible without changing the device geometry and thus without additional costly back-end processing steps. The control of the farfield radiation pattern makes these devices particularly interesting for high brightness applications, which demand highly directional emitters, such as for printing, bar code reading, large area displays and optical communication. The extraction efficiency of a MCLED is inversely proportional to the effective cavity length. An ideal cavity, allowing an extraction efficiency close to unity, consists of a low refractive index material and has an optical length of λ/2. In contrast to this, to obtain high internal quantum efficiencies it is necessary to use high index cavities with an optical length of at least λ. It should be noted, that the large penetration depth of the optical field in the semiconductor-based distributed Bragg reflectors (DBRs) leads to a significant increase of the effective cavity length and thus further reduces the achievable extraction efficiencies. In this thesis novel concepts to reduce effective cavity lengths and therefore increase extraction efficiencies are implemented into standard MCLED structures. The phaseshift cavity principle whilst maintaining the electrical properties of a standard A cavity achieves optical properties approaching that of a λ/2 cavity. The use of AlOx instead of AlAs as the, low refractive index component in the DBRs leads to smaller penetration depths and a concomitant reduction of the effective cavity length. A similar effect can be obtained by combining a resonant cavity with a thin-film structure. Thanks to these design improvements, the external quantum efficiency of different types of MCLEDs was increased. Near infrared emitting InGaAs/GaAs MCLEDs including a phase-shift cavity were realized, as both bottom and top emitting structures. The external quantum efficiencies achieved for emission into air were 18 and 19 %, respectively. With the additional incorporation of an oxide based bottom DBR, the efficiency of top emitting near infrared MCLEDs was further increased to 28 %. Red emitting AlGaInP-based structures are not compatible with the phase-shift cavity principle. However the beneficial effect of the implementation of an oxide DBR is greater at their wavelength rather than in the near infrared. Thus with preliminary red emitting GaInP/AlGaInP MCLEDs containing a bottom oxide DBR external quantum efficiencies of 12% could be achieved. Unfortunately, the incorporation of an oxide DBR significantly complicates the device design and the device fabrication. These problems can be avoided by combining the resonant cavity with a thin-film structure instead. Initial non-optimized red emitting thin-film MCLEDs were realized by OSRAM Opto Semiconductors and characterized in this work. They show external quantum efficiencies of 23 % and 18 % with and without encapsulation, respectively. It is assumed that a significant fraction of the high external quantum efficiency is due to a strong photon recycling effect in these devices. Simulations presented in this thesis show that the theoretical limits for the MCLEDs discussed above are slightly higher than the values obtained, encouraging further device optimization. The thin-film MCLEDs seem to hold the biggest potential for high efficiency emission from MCLEDs, independent of the wavelength range of emission." @default.
- W1520005877 created "2016-06-24" @default.
- W1520005877 creator A5034724042 @default.
- W1520005877 date "2005-01-01" @default.
- W1520005877 modified "2023-09-23" @default.
- W1520005877 title "Microcavity light emitting diodes in the visible red and near infrared wavelength range" @default.
- W1520005877 cites W1587179536 @default.
- W1520005877 cites W1655498265 @default.
- W1520005877 cites W1837679611 @default.
- W1520005877 cites W1928592541 @default.
- W1520005877 cites W1966544535 @default.
- W1520005877 cites W1967394964 @default.
- W1520005877 cites W1974471958 @default.
- W1520005877 cites W1977775507 @default.
- W1520005877 cites W1978033720 @default.
- W1520005877 cites W1980012966 @default.
- W1520005877 cites W1980418264 @default.
- W1520005877 cites W1987813875 @default.
- W1520005877 cites W1987893566 @default.
- W1520005877 cites W1988182383 @default.
- W1520005877 cites W1991073149 @default.
- W1520005877 cites W1994861671 @default.
- W1520005877 cites W1995890928 @default.
- W1520005877 cites W1996535653 @default.
- W1520005877 cites W2000008889 @default.
- W1520005877 cites W2000907639 @default.
- W1520005877 cites W2001500017 @default.
- W1520005877 cites W2001863818 @default.
- W1520005877 cites W2003204070 @default.
- W1520005877 cites W2003751381 @default.
- W1520005877 cites W2004188006 @default.
- W1520005877 cites W2004462361 @default.
- W1520005877 cites W2006892674 @default.
- W1520005877 cites W2007521854 @default.
- W1520005877 cites W2007759298 @default.
- W1520005877 cites W2009645353 @default.
- W1520005877 cites W2009663308 @default.
- W1520005877 cites W2011524363 @default.
- W1520005877 cites W2011618483 @default.
- W1520005877 cites W2011918882 @default.
- W1520005877 cites W2016025566 @default.
- W1520005877 cites W2016657645 @default.
- W1520005877 cites W2029591086 @default.
- W1520005877 cites W2032277784 @default.
- W1520005877 cites W2032281654 @default.
- W1520005877 cites W2033539709 @default.
- W1520005877 cites W2034524198 @default.
- W1520005877 cites W2034593971 @default.
- W1520005877 cites W2034790192 @default.
- W1520005877 cites W2036570288 @default.
- W1520005877 cites W2041480962 @default.
- W1520005877 cites W2049611721 @default.
- W1520005877 cites W2051945937 @default.
- W1520005877 cites W2053282628 @default.
- W1520005877 cites W2053483128 @default.
- W1520005877 cites W2054113198 @default.
- W1520005877 cites W2057126389 @default.
- W1520005877 cites W2058651607 @default.
- W1520005877 cites W2061317661 @default.
- W1520005877 cites W2061556897 @default.
- W1520005877 cites W2061895563 @default.
- W1520005877 cites W2064890132 @default.
- W1520005877 cites W2065528175 @default.
- W1520005877 cites W2070343498 @default.
- W1520005877 cites W2072645582 @default.
- W1520005877 cites W2076906367 @default.
- W1520005877 cites W2077188122 @default.
- W1520005877 cites W2084481944 @default.
- W1520005877 cites W2086210724 @default.
- W1520005877 cites W2091112583 @default.
- W1520005877 cites W2091211298 @default.
- W1520005877 cites W2091643689 @default.
- W1520005877 cites W2093773757 @default.
- W1520005877 cites W2098438502 @default.
- W1520005877 cites W2099374815 @default.
- W1520005877 cites W2110338159 @default.
- W1520005877 cites W2116661298 @default.
- W1520005877 cites W2116830909 @default.
- W1520005877 cites W2118673456 @default.
- W1520005877 cites W2122303867 @default.
- W1520005877 cites W2123343298 @default.
- W1520005877 cites W2124820000 @default.
- W1520005877 cites W2129349867 @default.
- W1520005877 cites W2135220526 @default.
- W1520005877 cites W2135420070 @default.
- W1520005877 cites W2139760662 @default.
- W1520005877 cites W2142938145 @default.
- W1520005877 cites W2147947714 @default.
- W1520005877 cites W2150572570 @default.
- W1520005877 cites W2152576040 @default.
- W1520005877 cites W2162839901 @default.
- W1520005877 cites W228239246 @default.
- W1520005877 cites W2483375165 @default.
- W1520005877 cites W3022980979 @default.
- W1520005877 cites W3023854223 @default.
- W1520005877 cites W578635386 @default.
- W1520005877 cites W632839044 @default.
- W1520005877 cites W1919348179 @default.
- W1520005877 cites W2049029614 @default.
- W1520005877 cites W2994841252 @default.