Matches in SemOpenAlex for { <https://semopenalex.org/work/W1520282690> ?p ?o ?g. }
- W1520282690 abstract "Nanowires (NW) are defined here as metallic or semiconducting particles having a high aspect ratio, with cross-sectional diameters « 1 ┤m, and lengths as long as tens of microns. Well-aligned one-dimensional nanowire arrays have been widely investigated as photoelectrodes for solar energy conversion because they provide direct electrical pathways ensuring the rapid collection of carriers generated throughout the device (Tang et al., 2008), as well as affording large junction areas and low reflectance owing to light scattering and trapping (Muskens et al., 2008). Solar energy conversion is a highly attractive process for clean and renewable power for the future. Excitonic solar cells (SCs), including organic and dye-sensitized solar cells (DSSC), appear to have significant potential as a low cost alternative to conventional inorganic photovoltaic (PV) devices. The synthesis and application of nanostructures in solar cells have attracted much attention. Metal oxide nanowire (NW) arrays with large surface area and short diffusion length for minority carriers represent a new class of photoelectrode materials that hold great promise for photoelectrochemical (PEC) hydrogen generation applications. Up to now, various metal oxide nanostructures such as TiO2, ZnO, Fe2O3, ZrO2, Nb2O5, Al2O3, and CeO2 have been successfully employed as photoelectrodes in SCs. Among the above-mentioned metal oxide nanostructures, the study of TiO2 and ZnO is of particular interest due to the fact that they are the best candidates as photoelectrode used in SCs. However, the advantage offered by the increased surface area of the nanoparticle film is compromised by the effectiveness of charge collection by the electrode. For DSSCs, the traditional nanoparticle film was replaced by a dense array of oriented, crystalline nanostructures to obtain faster electron transport for improving solar cell efficiency. A typical high-efficiency DSSC (Gratzel, 2009) consists of a TiO2 nanocrystal thin film that has a large surface area covered by a monolayer of dye molecules to harvest sunlight. Comparedwith TiO2, ZnO shows higher electron mobility with similar bandgap and conduction band energies. ZnO is a direct wide bandgap semiconductor (Eg = 3.4 eV) with large exciton binding energy (~60 meV), suggesting that it is a promising candidate for stable room temperature luminescent and lasing devices. Therefore, ZnO nanowires is an alternative candidate for high efficient SCs." @default.
- W1520282690 created "2016-06-24" @default.
- W1520282690 creator A5025017321 @default.
- W1520282690 creator A5074234824 @default.
- W1520282690 date "2011-07-18" @default.
- W1520282690 modified "2023-10-16" @default.
- W1520282690 title "ZnO Nanowires and Their Application for Solar Cells" @default.
- W1520282690 cites W1965597073 @default.
- W1520282690 cites W1968571822 @default.
- W1520282690 cites W1969095220 @default.
- W1520282690 cites W1970852567 @default.
- W1520282690 cites W1970856344 @default.
- W1520282690 cites W1971727621 @default.
- W1520282690 cites W1972240490 @default.
- W1520282690 cites W1979343550 @default.
- W1520282690 cites W1982790203 @default.
- W1520282690 cites W1983566198 @default.
- W1520282690 cites W1988783514 @default.
- W1520282690 cites W1989915378 @default.
- W1520282690 cites W1993602113 @default.
- W1520282690 cites W1995549647 @default.
- W1520282690 cites W1997575850 @default.
- W1520282690 cites W1998939153 @default.
- W1520282690 cites W2001674710 @default.
- W1520282690 cites W2002522559 @default.
- W1520282690 cites W2002710335 @default.
- W1520282690 cites W2005877773 @default.
- W1520282690 cites W2006359365 @default.
- W1520282690 cites W2006457256 @default.
- W1520282690 cites W2014386122 @default.
- W1520282690 cites W2015979160 @default.
- W1520282690 cites W2016873746 @default.
- W1520282690 cites W2026667950 @default.
- W1520282690 cites W2028337987 @default.
- W1520282690 cites W2029380443 @default.
- W1520282690 cites W2029739590 @default.
- W1520282690 cites W2038076919 @default.
- W1520282690 cites W2038723345 @default.
- W1520282690 cites W2039909737 @default.
- W1520282690 cites W2041723310 @default.
- W1520282690 cites W2047302526 @default.
- W1520282690 cites W2048752671 @default.
- W1520282690 cites W2049894017 @default.
- W1520282690 cites W2055913249 @default.
- W1520282690 cites W2057001956 @default.
- W1520282690 cites W2061784497 @default.
- W1520282690 cites W2064042134 @default.
- W1520282690 cites W2064723072 @default.
- W1520282690 cites W2065604842 @default.
- W1520282690 cites W2072741626 @default.
- W1520282690 cites W2073777485 @default.
- W1520282690 cites W2079814243 @default.
- W1520282690 cites W2080568624 @default.
- W1520282690 cites W2083039595 @default.
- W1520282690 cites W2088403025 @default.
- W1520282690 cites W2088839117 @default.
- W1520282690 cites W2094549614 @default.
- W1520282690 cites W2098764701 @default.
- W1520282690 cites W2104289634 @default.
- W1520282690 cites W2115637275 @default.
- W1520282690 cites W2120517672 @default.
- W1520282690 cites W2132872911 @default.
- W1520282690 cites W2134071826 @default.
- W1520282690 cites W2139889185 @default.
- W1520282690 cites W2159943949 @default.
- W1520282690 cites W2165149554 @default.
- W1520282690 cites W2169288565 @default.
- W1520282690 cites W2319246578 @default.
- W1520282690 cites W2952957286 @default.
- W1520282690 doi "https://doi.org/10.5772/17923" @default.
- W1520282690 hasPublicationYear "2011" @default.
- W1520282690 type Work @default.
- W1520282690 sameAs 1520282690 @default.
- W1520282690 citedByCount "8" @default.
- W1520282690 countsByYear W15202826902013 @default.
- W1520282690 countsByYear W15202826902014 @default.
- W1520282690 countsByYear W15202826902015 @default.
- W1520282690 countsByYear W15202826902020 @default.
- W1520282690 countsByYear W15202826902022 @default.
- W1520282690 crossrefType "book-chapter" @default.
- W1520282690 hasAuthorship W1520282690A5025017321 @default.
- W1520282690 hasAuthorship W1520282690A5074234824 @default.
- W1520282690 hasBestOaLocation W15202826901 @default.
- W1520282690 hasConcept C121332964 @default.
- W1520282690 hasConcept C171250308 @default.
- W1520282690 hasConcept C192562407 @default.
- W1520282690 hasConcept C49040817 @default.
- W1520282690 hasConcept C61696701 @default.
- W1520282690 hasConcept C74214498 @default.
- W1520282690 hasConceptScore W1520282690C121332964 @default.
- W1520282690 hasConceptScore W1520282690C171250308 @default.
- W1520282690 hasConceptScore W1520282690C192562407 @default.
- W1520282690 hasConceptScore W1520282690C49040817 @default.
- W1520282690 hasConceptScore W1520282690C61696701 @default.
- W1520282690 hasConceptScore W1520282690C74214498 @default.
- W1520282690 hasLocation W15202826901 @default.
- W1520282690 hasLocation W15202826902 @default.
- W1520282690 hasOpenAccess W1520282690 @default.
- W1520282690 hasPrimaryLocation W15202826901 @default.
- W1520282690 hasRelatedWork W1966077344 @default.