Matches in SemOpenAlex for { <https://semopenalex.org/work/W1520291720> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W1520291720 endingPage "640" @default.
- W1520291720 startingPage "631" @default.
- W1520291720 abstract "To improve weak classifiers bagging and boosting could be used. These techniques are based on combining classifiers. Usually, a simple majority vote or a weighted majority vote are used as combining rules in bagging and boosting. However, other combining rules such as mean, product and average are possible. In this paper, we study bagging and boosting in Linear Discriminant Analysis (LDA) and the role of combining rules in bagging and boosting. Simulation studies, carried out for two artificial data sets and one real data set, show that bagging and boosting might be useful in LDA: bagging for critical training sample sizes and boosting for large training sample sizes. In contrast to a common opinion, we demonstrate that the usefulness of boosting does not directly depend on the instability of a classifier. It is also shown that the choice of the combining rule may affect the performance of bagging and boosting." @default.
- W1520291720 created "2016-06-24" @default.
- W1520291720 creator A5037908027 @default.
- W1520291720 creator A5072002887 @default.
- W1520291720 date "2000-01-01" @default.
- W1520291720 modified "2023-09-26" @default.
- W1520291720 title "The Role of Combining Rules in Bagging and Boosting" @default.
- W1520291720 cites W1975846642 @default.
- W1520291720 cites W2024046085 @default.
- W1520291720 cites W2049235942 @default.
- W1520291720 cites W2067885219 @default.
- W1520291720 cites W2124136621 @default.
- W1520291720 cites W3106889297 @default.
- W1520291720 cites W4238240379 @default.
- W1520291720 doi "https://doi.org/10.1007/3-540-44522-6_65" @default.
- W1520291720 hasPublicationYear "2000" @default.
- W1520291720 type Work @default.
- W1520291720 sameAs 1520291720 @default.
- W1520291720 citedByCount "16" @default.
- W1520291720 countsByYear W15202917202012 @default.
- W1520291720 countsByYear W15202917202013 @default.
- W1520291720 countsByYear W15202917202014 @default.
- W1520291720 crossrefType "book-chapter" @default.
- W1520291720 hasAuthorship W1520291720A5037908027 @default.
- W1520291720 hasAuthorship W1520291720A5072002887 @default.
- W1520291720 hasBestOaLocation W15202917201 @default.
- W1520291720 hasConcept C119857082 @default.
- W1520291720 hasConcept C153180895 @default.
- W1520291720 hasConcept C154945302 @default.
- W1520291720 hasConcept C169258074 @default.
- W1520291720 hasConcept C33923547 @default.
- W1520291720 hasConcept C41008148 @default.
- W1520291720 hasConcept C46686674 @default.
- W1520291720 hasConcept C51632099 @default.
- W1520291720 hasConcept C69738355 @default.
- W1520291720 hasConcept C70153297 @default.
- W1520291720 hasConcept C95623464 @default.
- W1520291720 hasConceptScore W1520291720C119857082 @default.
- W1520291720 hasConceptScore W1520291720C153180895 @default.
- W1520291720 hasConceptScore W1520291720C154945302 @default.
- W1520291720 hasConceptScore W1520291720C169258074 @default.
- W1520291720 hasConceptScore W1520291720C33923547 @default.
- W1520291720 hasConceptScore W1520291720C41008148 @default.
- W1520291720 hasConceptScore W1520291720C46686674 @default.
- W1520291720 hasConceptScore W1520291720C51632099 @default.
- W1520291720 hasConceptScore W1520291720C69738355 @default.
- W1520291720 hasConceptScore W1520291720C70153297 @default.
- W1520291720 hasConceptScore W1520291720C95623464 @default.
- W1520291720 hasLocation W15202917201 @default.
- W1520291720 hasOpenAccess W1520291720 @default.
- W1520291720 hasPrimaryLocation W15202917201 @default.
- W1520291720 hasRelatedWork W2134473739 @default.
- W1520291720 hasRelatedWork W2747360225 @default.
- W1520291720 hasRelatedWork W2963916311 @default.
- W1520291720 hasRelatedWork W3151529617 @default.
- W1520291720 hasRelatedWork W3159988495 @default.
- W1520291720 hasRelatedWork W3200719183 @default.
- W1520291720 hasRelatedWork W4288057626 @default.
- W1520291720 hasRelatedWork W4300133255 @default.
- W1520291720 hasRelatedWork W4309997757 @default.
- W1520291720 hasRelatedWork W4313488044 @default.
- W1520291720 isParatext "false" @default.
- W1520291720 isRetracted "false" @default.
- W1520291720 magId "1520291720" @default.
- W1520291720 workType "book-chapter" @default.