Matches in SemOpenAlex for { <https://semopenalex.org/work/W1520343032> ?p ?o ?g. }
- W1520343032 endingPage "39" @default.
- W1520343032 startingPage "21" @default.
- W1520343032 abstract "Association rule mining is a well-known methodology to discover significant and apparently hidden relations among attributes in a subspace of instances from datasets. Genetic algorithms have been extensively used to find interesting association rules. However, the rule-matching task of such techniques usually requires high computational and memory requirements. The use of efficient computational techniques has become a task of the utmost importance due to the high volume of generated data nowadays. Hence, this paper aims at improving the scalability of quantitative association rule mining techniques based on genetic algorithms to handle large-scale datasets without quality loss in the results obtained. For this purpose, a new representation of the individuals, new genetic operators and a windowing-based learning scheme are proposed to achieve successfully such challenging task. Specifically, the proposed techniques are integrated into the multi-objective evolutionary algorithm named QARGA-M to assess their performances. Both the standard version and the enhanced one of QARGA-M have been tested in several datasets that present different number of attributes and instances. Furthermore, the proposed methodologies have been integrated into other existing techniques based in genetic algorithms to discover quantitative association rules. The comparative analysis performed shows significant improvements of QARGA-M and other existing genetic algorithms in terms of computational costs without losing quality in the results when the proposed techniques are applied." @default.
- W1520343032 created "2016-06-24" @default.
- W1520343032 creator A5007453127 @default.
- W1520343032 creator A5012372361 @default.
- W1520343032 creator A5028880020 @default.
- W1520343032 creator A5036001529 @default.
- W1520343032 date "2015-01-01" @default.
- W1520343032 modified "2023-10-02" @default.
- W1520343032 title "Enhancing the scalability of a genetic algorithm to discover quantitative association rules in large-scale datasets" @default.
- W1520343032 cites W117541504 @default.
- W1520343032 cites W1479671302 @default.
- W1520343032 cites W1480195994 @default.
- W1520343032 cites W1499842900 @default.
- W1520343032 cites W1502085589 @default.
- W1520343032 cites W1505686907 @default.
- W1520343032 cites W1506285740 @default.
- W1520343032 cites W1536531845 @default.
- W1520343032 cites W1579266052 @default.
- W1520343032 cites W1602306524 @default.
- W1520343032 cites W1636794405 @default.
- W1520343032 cites W1883966560 @default.
- W1520343032 cites W1967160581 @default.
- W1520343032 cites W1975877936 @default.
- W1520343032 cites W1987625741 @default.
- W1520343032 cites W1989264971 @default.
- W1520343032 cites W1995797177 @default.
- W1520343032 cites W2005336557 @default.
- W1520343032 cites W2008607241 @default.
- W1520343032 cites W2009308375 @default.
- W1520343032 cites W2011062180 @default.
- W1520343032 cites W2011691939 @default.
- W1520343032 cites W2019492310 @default.
- W1520343032 cites W2023770077 @default.
- W1520343032 cites W2026505708 @default.
- W1520343032 cites W2038442112 @default.
- W1520343032 cites W2045761815 @default.
- W1520343032 cites W2049736842 @default.
- W1520343032 cites W2076091958 @default.
- W1520343032 cites W2076636244 @default.
- W1520343032 cites W2078161768 @default.
- W1520343032 cites W2084204850 @default.
- W1520343032 cites W2092178231 @default.
- W1520343032 cites W2102297485 @default.
- W1520343032 cites W2106880067 @default.
- W1520343032 cites W2107837291 @default.
- W1520343032 cites W2107962788 @default.
- W1520343032 cites W2111362647 @default.
- W1520343032 cites W2115937354 @default.
- W1520343032 cites W2120387195 @default.
- W1520343032 cites W2126105956 @default.
- W1520343032 cites W2127142405 @default.
- W1520343032 cites W2129335041 @default.
- W1520343032 cites W2134795315 @default.
- W1520343032 cites W2146517105 @default.
- W1520343032 cites W2147265277 @default.
- W1520343032 cites W2148497813 @default.
- W1520343032 cites W2149378474 @default.
- W1520343032 cites W2151537585 @default.
- W1520343032 cites W2166559705 @default.
- W1520343032 cites W2171322452 @default.
- W1520343032 cites W2188584315 @default.
- W1520343032 cites W2290652772 @default.
- W1520343032 cites W574780178 @default.
- W1520343032 cites W84754442 @default.
- W1520343032 cites W1986793086 @default.
- W1520343032 doi "https://doi.org/10.3233/ica-140479" @default.
- W1520343032 hasPublicationYear "2015" @default.
- W1520343032 type Work @default.
- W1520343032 sameAs 1520343032 @default.
- W1520343032 citedByCount "30" @default.
- W1520343032 countsByYear W15203430322016 @default.
- W1520343032 countsByYear W15203430322017 @default.
- W1520343032 countsByYear W15203430322018 @default.
- W1520343032 countsByYear W15203430322019 @default.
- W1520343032 countsByYear W15203430322020 @default.
- W1520343032 countsByYear W15203430322021 @default.
- W1520343032 countsByYear W15203430322022 @default.
- W1520343032 crossrefType "journal-article" @default.
- W1520343032 hasAuthorship W1520343032A5007453127 @default.
- W1520343032 hasAuthorship W1520343032A5012372361 @default.
- W1520343032 hasAuthorship W1520343032A5028880020 @default.
- W1520343032 hasAuthorship W1520343032A5036001529 @default.
- W1520343032 hasBestOaLocation W15203430322 @default.
- W1520343032 hasConcept C119857082 @default.
- W1520343032 hasConcept C121332964 @default.
- W1520343032 hasConcept C124101348 @default.
- W1520343032 hasConcept C127413603 @default.
- W1520343032 hasConcept C154945302 @default.
- W1520343032 hasConcept C17744445 @default.
- W1520343032 hasConcept C193524817 @default.
- W1520343032 hasConcept C199539241 @default.
- W1520343032 hasConcept C201995342 @default.
- W1520343032 hasConcept C2776359362 @default.
- W1520343032 hasConcept C2778755073 @default.
- W1520343032 hasConcept C2780451532 @default.
- W1520343032 hasConcept C32834561 @default.
- W1520343032 hasConcept C41008148 @default.
- W1520343032 hasConcept C48044578 @default.