Matches in SemOpenAlex for { <https://semopenalex.org/work/W1520384902> ?p ?o ?g. }
- W1520384902 abstract "This thesis is concerned with the analytic properties of arithmetic zeta functions, which remain largely conjectural at the time of writing. We will focus primarily on the most basic amongst them - meromorphic continuation and functional equation. Our weapon of choice is the so-called “mean-periodicity correspondence”, which provides a passage between nicely behaved arithmetic schemes and mean-periodic functions in certain functional spaces. In what follows, there are two major themes.1. The comparison of the mean-periodicity properties of zeta functions with the much better known, but nonetheless conjectural, automorphicity properties of Hasse–Weil L functions. The latter of the two is a widely believed aspect of the Langlands program. In somewhat vague language, the two notions are dual to each other. One route to this result is broadly comparable to the Rankin-Selberg method, in which Fesenko’s “boundary function” plays the role of an Eisenstein series.2. The use of a form of “lifted” harmonic analysis on the non-locally compact adele groups of arithmetic surfaces to develop integral representations of zeta functions. We also provide a more general discussion of a prospective theory of GL1(A(S)) zeta-integrals, where S is an arithmetic surface. When combined with adelic duality, we see that mean-periodicity may be accessible through further developments in higher dimensional adelic analysis.The results of the first flavour have some bearing on questions asked first by Langlands, and those of the second kind are an extension of the ideas of Tate for Hecke L-functions. The theorems proved here directly extend those of Fesenko and Suzuki on two-dimensional adelic analysis and the interplay between mean-periodicity and automorphicity." @default.
- W1520384902 created "2016-06-24" @default.
- W1520384902 creator A5046686107 @default.
- W1520384902 date "2014-10-15" @default.
- W1520384902 modified "2023-09-27" @default.
- W1520384902 title "Higher dimensional adeles, mean-periodicity and zeta functions of arithmetic surfaces" @default.
- W1520384902 cites W121503494 @default.
- W1520384902 cites W1491546864 @default.
- W1520384902 cites W1515192744 @default.
- W1520384902 cites W152429278 @default.
- W1520384902 cites W1524305057 @default.
- W1520384902 cites W1537588030 @default.
- W1520384902 cites W1553928702 @default.
- W1520384902 cites W1558046128 @default.
- W1520384902 cites W1559684310 @default.
- W1520384902 cites W1574613873 @default.
- W1520384902 cites W1586485728 @default.
- W1520384902 cites W1590252182 @default.
- W1520384902 cites W1596185498 @default.
- W1520384902 cites W1652354397 @default.
- W1520384902 cites W1655772637 @default.
- W1520384902 cites W1691465368 @default.
- W1520384902 cites W1868013030 @default.
- W1520384902 cites W1974029796 @default.
- W1520384902 cites W1981295999 @default.
- W1520384902 cites W1983283149 @default.
- W1520384902 cites W2004146136 @default.
- W1520384902 cites W2007308968 @default.
- W1520384902 cites W2010775587 @default.
- W1520384902 cites W2012398344 @default.
- W1520384902 cites W2013011753 @default.
- W1520384902 cites W2015010463 @default.
- W1520384902 cites W2016499826 @default.
- W1520384902 cites W2021737378 @default.
- W1520384902 cites W2032405052 @default.
- W1520384902 cites W2050104347 @default.
- W1520384902 cites W2058823269 @default.
- W1520384902 cites W2061107511 @default.
- W1520384902 cites W2078295439 @default.
- W1520384902 cites W2087736116 @default.
- W1520384902 cites W2093483917 @default.
- W1520384902 cites W2106226212 @default.
- W1520384902 cites W2111151638 @default.
- W1520384902 cites W2116922467 @default.
- W1520384902 cites W2127409294 @default.
- W1520384902 cites W2128765897 @default.
- W1520384902 cites W2129368125 @default.
- W1520384902 cites W2136325560 @default.
- W1520384902 cites W2137292895 @default.
- W1520384902 cites W2147436369 @default.
- W1520384902 cites W2151265092 @default.
- W1520384902 cites W2205132641 @default.
- W1520384902 cites W2333976070 @default.
- W1520384902 cites W2481791548 @default.
- W1520384902 cites W2482574726 @default.
- W1520384902 cites W2490255894 @default.
- W1520384902 cites W27608904 @default.
- W1520384902 cites W2807567841 @default.
- W1520384902 cites W2963279908 @default.
- W1520384902 cites W2964116956 @default.
- W1520384902 cites W3023120969 @default.
- W1520384902 cites W3123841283 @default.
- W1520384902 cites W581956359 @default.
- W1520384902 hasPublicationYear "2014" @default.
- W1520384902 type Work @default.
- W1520384902 sameAs 1520384902 @default.
- W1520384902 citedByCount "0" @default.
- W1520384902 crossrefType "dissertation" @default.
- W1520384902 hasAuthorship W1520384902A5046686107 @default.
- W1520384902 hasConcept C112343008 @default.
- W1520384902 hasConcept C134306372 @default.
- W1520384902 hasConcept C136119220 @default.
- W1520384902 hasConcept C190333341 @default.
- W1520384902 hasConcept C202444582 @default.
- W1520384902 hasConcept C33923547 @default.
- W1520384902 hasConcept C35235930 @default.
- W1520384902 hasConcept C35861355 @default.
- W1520384902 hasConcept C94375191 @default.
- W1520384902 hasConceptScore W1520384902C112343008 @default.
- W1520384902 hasConceptScore W1520384902C134306372 @default.
- W1520384902 hasConceptScore W1520384902C136119220 @default.
- W1520384902 hasConceptScore W1520384902C190333341 @default.
- W1520384902 hasConceptScore W1520384902C202444582 @default.
- W1520384902 hasConceptScore W1520384902C33923547 @default.
- W1520384902 hasConceptScore W1520384902C35235930 @default.
- W1520384902 hasConceptScore W1520384902C35861355 @default.
- W1520384902 hasConceptScore W1520384902C94375191 @default.
- W1520384902 hasLocation W15203849021 @default.
- W1520384902 hasOpenAccess W1520384902 @default.
- W1520384902 hasPrimaryLocation W15203849021 @default.
- W1520384902 hasRelatedWork W1633862066 @default.
- W1520384902 hasRelatedWork W1755030628 @default.
- W1520384902 hasRelatedWork W195697887 @default.
- W1520384902 hasRelatedWork W1966346728 @default.
- W1520384902 hasRelatedWork W2024239047 @default.
- W1520384902 hasRelatedWork W2059940891 @default.
- W1520384902 hasRelatedWork W2093347990 @default.
- W1520384902 hasRelatedWork W2095048283 @default.
- W1520384902 hasRelatedWork W2134169495 @default.
- W1520384902 hasRelatedWork W2156217705 @default.