Matches in SemOpenAlex for { <https://semopenalex.org/work/W1520561570> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W1520561570 abstract "Composite materials are already widely used in engineering structures, especially in the aeronautical, and, indeed, the aerospace industries where their high specific strength and stiffness make them ideally suited to realise lower mass components. However, a major weakness of these laminated materials is that they are prone to delamination at both the interface bet ween the plies (interlaminar) and within plies (intralaminar), which hinders reliable prediction of thei r durability in service. It is therefore of primary importance to devise reliable experimental and numerical techniques to study and predict the behaviour of existing materials as well as engineer new damage tolerant composites capable of sustaining the increasingly demanding conditions in which they are used. Advanced composites are composed of stiff elastic fibres bonded together by a toughened epoxy matrix, t o form a lamina; numerous lamina are then bonded together to form a laminate. At the first level of simpl ification, each layer (i.e. lamina) can be considered as a linear, elastic, orthotropic material. In o rder to predict the intralaminar failure in such lamina, it is important to be able to accurately simulate cra ck behaviour and propagation. To achieve this, methods exist in the literature however, many approaches suffer a number of drawbacks, such as mesh sensitivity and the requirement for a-priori knowledge of where the delamination will occur, and so not suited to intralaminar delamination prediction.To allevi ate these difficulties, partition of unity methods (PUM) [1] were introduced. In the PU framework, arbitrary functions are added to the standard polynomial finite element (FE) space in order to improve the approxi mation power of the resulting numerical method. In particular, the extended finite element method (X FEM) [2] allows simulation of crack propagation without remeshing by introducing two classes of enrichment functions:discontinuous enrichment to capture the displacement jump through the crack faces and near-tip asymptotic enrichment to capture the stress singularity at the crack tip in linear elastic fra cture mechanics (LEFM). In this paper, a new tool based on the extended finite element method (XFEM) [2] wh ich allows to simulate the growth of arbitrary cracks in orthotropic materials is devised, anal ysed and evaluated. The extended finite element method works by enriching the sta ndard FEM basis through a local partition of unity. The standard FE displacement approximation equation is given by u h (x) = ∑ ieI Ni(x)ui (1) where: uh(x) is an approximation for the displacement field, Ni(x) are the element shape functions and ui are the nodal displacements. In XFEM, the displacement field is augmented by discontinuous enrichment functions to give the displacement approximation as Ni(x)ui +∑ jeJ Nj(x)Ψ(x)a j (2) where Nj(x)are the element shape functions associated with the nodal subset j, Ψ(x) are the enrichment functions and a j are the additional degrees of freedom associated with the enrichment. The enrichment functions Ψ(x) are decided based upon an analytical solution of the problem. For crack modelling the most commonly used enrichment functions are the heavyside step function or split enrichment function which is often used to enrich the midsection of a crack. In order to model the crack tip singularity, the" @default.
- W1520561570 created "2016-06-24" @default.
- W1520561570 creator A5005250655 @default.
- W1520561570 creator A5008248628 @default.
- W1520561570 creator A5014555327 @default.
- W1520561570 creator A5040083967 @default.
- W1520561570 creator A5043706874 @default.
- W1520561570 creator A5078881912 @default.
- W1520561570 date "2010-01-01" @default.
- W1520561570 modified "2023-09-27" @default.
- W1520561570 title "Enriched finite elements (xfem) for multi-crack growth simulations in orthotropic materials" @default.
- W1520561570 cites W1597988898 @default.
- W1520561570 cites W2018039791 @default.
- W1520561570 cites W2020362071 @default.
- W1520561570 cites W2127326221 @default.
- W1520561570 cites W2141106913 @default.
- W1520561570 cites W2165834163 @default.
- W1520561570 hasPublicationYear "2010" @default.
- W1520561570 type Work @default.
- W1520561570 sameAs 1520561570 @default.
- W1520561570 citedByCount "0" @default.
- W1520561570 crossrefType "journal-article" @default.
- W1520561570 hasAuthorship W1520561570A5005250655 @default.
- W1520561570 hasAuthorship W1520561570A5008248628 @default.
- W1520561570 hasAuthorship W1520561570A5014555327 @default.
- W1520561570 hasAuthorship W1520561570A5040083967 @default.
- W1520561570 hasAuthorship W1520561570A5043706874 @default.
- W1520561570 hasAuthorship W1520561570A5078881912 @default.
- W1520561570 hasConcept C104304963 @default.
- W1520561570 hasConcept C104779481 @default.
- W1520561570 hasConcept C127413603 @default.
- W1520561570 hasConcept C131336679 @default.
- W1520561570 hasConcept C135628077 @default.
- W1520561570 hasConcept C145922259 @default.
- W1520561570 hasConcept C146978453 @default.
- W1520561570 hasConcept C151730666 @default.
- W1520561570 hasConcept C159985019 @default.
- W1520561570 hasConcept C167740415 @default.
- W1520561570 hasConcept C192562407 @default.
- W1520561570 hasConcept C2779372316 @default.
- W1520561570 hasConcept C30239060 @default.
- W1520561570 hasConcept C41008148 @default.
- W1520561570 hasConcept C58097730 @default.
- W1520561570 hasConcept C66938386 @default.
- W1520561570 hasConcept C77928131 @default.
- W1520561570 hasConcept C86803240 @default.
- W1520561570 hasConceptScore W1520561570C104304963 @default.
- W1520561570 hasConceptScore W1520561570C104779481 @default.
- W1520561570 hasConceptScore W1520561570C127413603 @default.
- W1520561570 hasConceptScore W1520561570C131336679 @default.
- W1520561570 hasConceptScore W1520561570C135628077 @default.
- W1520561570 hasConceptScore W1520561570C145922259 @default.
- W1520561570 hasConceptScore W1520561570C146978453 @default.
- W1520561570 hasConceptScore W1520561570C151730666 @default.
- W1520561570 hasConceptScore W1520561570C159985019 @default.
- W1520561570 hasConceptScore W1520561570C167740415 @default.
- W1520561570 hasConceptScore W1520561570C192562407 @default.
- W1520561570 hasConceptScore W1520561570C2779372316 @default.
- W1520561570 hasConceptScore W1520561570C30239060 @default.
- W1520561570 hasConceptScore W1520561570C41008148 @default.
- W1520561570 hasConceptScore W1520561570C58097730 @default.
- W1520561570 hasConceptScore W1520561570C66938386 @default.
- W1520561570 hasConceptScore W1520561570C77928131 @default.
- W1520561570 hasConceptScore W1520561570C86803240 @default.
- W1520561570 hasLocation W15205615701 @default.
- W1520561570 hasOpenAccess W1520561570 @default.
- W1520561570 hasPrimaryLocation W15205615701 @default.
- W1520561570 hasRelatedWork W1557464572 @default.
- W1520561570 hasRelatedWork W1968191567 @default.
- W1520561570 hasRelatedWork W2070213095 @default.
- W1520561570 hasRelatedWork W2075664200 @default.
- W1520561570 hasRelatedWork W2079940293 @default.
- W1520561570 hasRelatedWork W2108991092 @default.
- W1520561570 hasRelatedWork W2131139319 @default.
- W1520561570 hasRelatedWork W2138465924 @default.
- W1520561570 hasRelatedWork W2150787941 @default.
- W1520561570 hasRelatedWork W2266258128 @default.
- W1520561570 hasRelatedWork W2390406420 @default.
- W1520561570 hasRelatedWork W2547198712 @default.
- W1520561570 hasRelatedWork W2547632185 @default.
- W1520561570 hasRelatedWork W2557171422 @default.
- W1520561570 hasRelatedWork W2766699138 @default.
- W1520561570 hasRelatedWork W2981951178 @default.
- W1520561570 hasRelatedWork W3089650700 @default.
- W1520561570 hasRelatedWork W92100997 @default.
- W1520561570 hasRelatedWork W2439512681 @default.
- W1520561570 hasRelatedWork W2552348836 @default.
- W1520561570 isParatext "false" @default.
- W1520561570 isRetracted "false" @default.
- W1520561570 magId "1520561570" @default.
- W1520561570 workType "article" @default.