Matches in SemOpenAlex for { <https://semopenalex.org/work/W1520565116> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W1520565116 abstract "Background: The only way to determine visceral fat separately from subcutaneous fat is through magnetic resonance imaging (MRI) or computed tomography (CT) scans. The use of MRI or CT scans is unacceptable for screening in the general population. Given this, estimating equations for visceral fat that use commonly collected clinical variables have potential utility. Methods: Data are from 1842 participants, aged 45 to 84, from the Multi-Ethnic Study of Atherosclerosis with visceral fat assessed by CT scan at study visit 2 or 3, and anthropometry measured at matched visits. We excluded 19 participants with reported thiazolidinedione use, 11 with waist circumference greater than 140cm, and 5 with BMI greater than 45kg/m 2 . Visceral fat area, measured in cm 2 , was calculated as the average area from two CT scan slices at the L4/L5 vertebrae. Visceral fat was naturally log transformed to account for non-normality. Anthropometric indices included: height(cm), weight(kg), BMI(kg/m 2 ), waist circumference(cm), hip circumference(cm), waist to hip ratio, and waist to height ratio. Other variables included sex, Black, Asian, and Hispanic race/ethnicities, and age. Data were separated into training and testing datasets containing 2/3 and 1/3 of the data, respectively. Multivariable linear models were used to generate coefficients for the estimating equations and included non-linear and interaction terms. The PRESS statistic, R 2 , and RMSE were used to determine goodness of fit and likelihood ratio tests were used for variable and model selection. Results: Models including multiple measures of anthropometry performed better than models including only waist circumference or BMI. Models including non-linear terms for anthropometry and interaction by sex and race performed better than simple linear models. After analysis, the final estimating equation was: Ln Visceral Fat = -8.64 + 0.006*age - 8.42*sex - 8.53*black - 0.099*weight + 0.41*bmi + 0.022*waist + 0.029*hip + 8.58*waist/hip - 0.00396*bmi 2 +0.00015*waist 2 - 0.0003*hip 2 - 4.89*(waist/hip) 2 - 0.014*weight*sex - 0.066*waist*sex + 0.076*hip*sex + 8.57*(waist/hip)*sex - 0.097*waist*black + 0.088*hip*black + 10.31*(waist/hip)*black. The R 2 in the testing dataset for this model was 0.62. The estimates of visceral fat from the final equation provided estimates within 10% of measured values for nearly 90% of the observations. Conclusion: Our final model, that predicts visceral fat from CT scans, is highly parsimonious involving only seven variables that can be easily collected in the clinical setting. This practical equation might help improve the estimation of visceral fat in order to determine who is at greatest risk for CVD and who might benefit most from weight loss interventions." @default.
- W1520565116 created "2016-06-24" @default.
- W1520565116 creator A5014057385 @default.
- W1520565116 creator A5021361864 @default.
- W1520565116 creator A5023153504 @default.
- W1520565116 creator A5035106740 @default.
- W1520565116 creator A5045050293 @default.
- W1520565116 creator A5049197120 @default.
- W1520565116 creator A5064362921 @default.
- W1520565116 creator A5075797873 @default.
- W1520565116 date "2014-03-25" @default.
- W1520565116 modified "2023-09-23" @default.
- W1520565116 title "Abstract P082: Estimating Equation for Computed Tomography Derived Visceral Fat: The Multi-Ethnic Study of Atherosclerosis" @default.
- W1520565116 doi "https://doi.org/10.1161/circ.129.suppl_1.p082" @default.
- W1520565116 hasPublicationYear "2014" @default.
- W1520565116 type Work @default.
- W1520565116 sameAs 1520565116 @default.
- W1520565116 citedByCount "0" @default.
- W1520565116 crossrefType "journal-article" @default.
- W1520565116 hasAuthorship W1520565116A5014057385 @default.
- W1520565116 hasAuthorship W1520565116A5021361864 @default.
- W1520565116 hasAuthorship W1520565116A5023153504 @default.
- W1520565116 hasAuthorship W1520565116A5035106740 @default.
- W1520565116 hasAuthorship W1520565116A5045050293 @default.
- W1520565116 hasAuthorship W1520565116A5049197120 @default.
- W1520565116 hasAuthorship W1520565116A5064362921 @default.
- W1520565116 hasAuthorship W1520565116A5075797873 @default.
- W1520565116 hasConcept C126322002 @default.
- W1520565116 hasConcept C126838900 @default.
- W1520565116 hasConcept C143409427 @default.
- W1520565116 hasConcept C166504685 @default.
- W1520565116 hasConcept C171089720 @default.
- W1520565116 hasConcept C2524010 @default.
- W1520565116 hasConcept C2776193436 @default.
- W1520565116 hasConcept C2777391703 @default.
- W1520565116 hasConcept C2780221984 @default.
- W1520565116 hasConcept C2908647359 @default.
- W1520565116 hasConcept C2909124604 @default.
- W1520565116 hasConcept C2989005 @default.
- W1520565116 hasConcept C3018861615 @default.
- W1520565116 hasConcept C3020796190 @default.
- W1520565116 hasConcept C33923547 @default.
- W1520565116 hasConcept C511355011 @default.
- W1520565116 hasConcept C544519230 @default.
- W1520565116 hasConcept C61427482 @default.
- W1520565116 hasConcept C71924100 @default.
- W1520565116 hasConcept C99454951 @default.
- W1520565116 hasConceptScore W1520565116C126322002 @default.
- W1520565116 hasConceptScore W1520565116C126838900 @default.
- W1520565116 hasConceptScore W1520565116C143409427 @default.
- W1520565116 hasConceptScore W1520565116C166504685 @default.
- W1520565116 hasConceptScore W1520565116C171089720 @default.
- W1520565116 hasConceptScore W1520565116C2524010 @default.
- W1520565116 hasConceptScore W1520565116C2776193436 @default.
- W1520565116 hasConceptScore W1520565116C2777391703 @default.
- W1520565116 hasConceptScore W1520565116C2780221984 @default.
- W1520565116 hasConceptScore W1520565116C2908647359 @default.
- W1520565116 hasConceptScore W1520565116C2909124604 @default.
- W1520565116 hasConceptScore W1520565116C2989005 @default.
- W1520565116 hasConceptScore W1520565116C3018861615 @default.
- W1520565116 hasConceptScore W1520565116C3020796190 @default.
- W1520565116 hasConceptScore W1520565116C33923547 @default.
- W1520565116 hasConceptScore W1520565116C511355011 @default.
- W1520565116 hasConceptScore W1520565116C544519230 @default.
- W1520565116 hasConceptScore W1520565116C61427482 @default.
- W1520565116 hasConceptScore W1520565116C71924100 @default.
- W1520565116 hasConceptScore W1520565116C99454951 @default.
- W1520565116 hasLocation W15205651161 @default.
- W1520565116 hasOpenAccess W1520565116 @default.
- W1520565116 hasPrimaryLocation W15205651161 @default.
- W1520565116 hasRelatedWork W103419847 @default.
- W1520565116 hasRelatedWork W117443429 @default.
- W1520565116 hasRelatedWork W1971963277 @default.
- W1520565116 hasRelatedWork W1987194461 @default.
- W1520565116 hasRelatedWork W2020432568 @default.
- W1520565116 hasRelatedWork W2067838721 @default.
- W1520565116 hasRelatedWork W2072127975 @default.
- W1520565116 hasRelatedWork W2078306959 @default.
- W1520565116 hasRelatedWork W2121859614 @default.
- W1520565116 hasRelatedWork W2148810893 @default.
- W1520565116 hasRelatedWork W2151197975 @default.
- W1520565116 hasRelatedWork W2170923751 @default.
- W1520565116 hasRelatedWork W2414477132 @default.
- W1520565116 hasRelatedWork W2430455736 @default.
- W1520565116 hasRelatedWork W2746524402 @default.
- W1520565116 hasRelatedWork W2752302016 @default.
- W1520565116 hasRelatedWork W3030933061 @default.
- W1520565116 hasRelatedWork W3196950539 @default.
- W1520565116 hasRelatedWork W65784928 @default.
- W1520565116 hasRelatedWork W3097855485 @default.
- W1520565116 isParatext "false" @default.
- W1520565116 isRetracted "false" @default.
- W1520565116 magId "1520565116" @default.
- W1520565116 workType "article" @default.