Matches in SemOpenAlex for { <https://semopenalex.org/work/W1520981211> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W1520981211 abstract "A ring is an algebraic structure equipped with two binary operations satisfying certain axioms, providing it with specific and highly useful properties. Furthermore, letting the elements of such structure constitute the coefficients in polynomials forms a new set in which the ring properties are preserved – a polynomial ring. To gain a deeper understanding of the rings, one may consider additively closed and multiplicatively absorbing subsets known as ideals. In the case of polynomial rings, ideals are of particular importance as they often are used to define field extensions to introduce solutions to polynomial equations, one such example being the complex numbers C. Ideals can be explicitly defined by means of generating sets; a number of key elements that, when applying the rules of operation to them, generates the entire ideal. Ideals generated solely by single-termed polynomials (monomials) in two or three variables were the focus of this thesis. We outlined a method to graphically visualize these monomial ideals and examined how it could facilitate operations over them. More specifically, we explored basic arithmetics and found that adding two monomial ideals is equivalent to superimposing their graphical representations, and that multiplying them corresponded to point vector addition between the figures. Additionally, we considered an algebraic approach to finding the integral closure of a monomial ideal and derived a graphically analog method generalizable to higher dimensions. Lastly, we hypothesized how the visualizations could be further utilized to aid in identifying minimal monomial reductions and suggested the incorporation of ideas from linear algebra to further advance such procedure. Bachelor thesis Department of Mathematics, Uppsala University Sweden, 2014" @default.
- W1520981211 created "2016-06-24" @default.
- W1520981211 creator A5040553789 @default.
- W1520981211 date "2014-01-01" @default.
- W1520981211 modified "2023-09-24" @default.
- W1520981211 title "Operations on ideals in polynomial rings" @default.
- W1520981211 cites W2052076085 @default.
- W1520981211 cites W633017900 @default.
- W1520981211 hasPublicationYear "2014" @default.
- W1520981211 type Work @default.
- W1520981211 sameAs 1520981211 @default.
- W1520981211 citedByCount "0" @default.
- W1520981211 crossrefType "journal-article" @default.
- W1520981211 hasAuthorship W1520981211A5040553789 @default.
- W1520981211 hasConcept C111472728 @default.
- W1520981211 hasConcept C11252640 @default.
- W1520981211 hasConcept C118615104 @default.
- W1520981211 hasConcept C134306372 @default.
- W1520981211 hasConcept C136119220 @default.
- W1520981211 hasConcept C138885662 @default.
- W1520981211 hasConcept C167729594 @default.
- W1520981211 hasConcept C178790620 @default.
- W1520981211 hasConcept C185592680 @default.
- W1520981211 hasConcept C202444582 @default.
- W1520981211 hasConcept C2524010 @default.
- W1520981211 hasConcept C2776639384 @default.
- W1520981211 hasConcept C2780378348 @default.
- W1520981211 hasConcept C33923547 @default.
- W1520981211 hasConcept C46132437 @default.
- W1520981211 hasConcept C90119067 @default.
- W1520981211 hasConcept C9485509 @default.
- W1520981211 hasConcept C9652623 @default.
- W1520981211 hasConceptScore W1520981211C111472728 @default.
- W1520981211 hasConceptScore W1520981211C11252640 @default.
- W1520981211 hasConceptScore W1520981211C118615104 @default.
- W1520981211 hasConceptScore W1520981211C134306372 @default.
- W1520981211 hasConceptScore W1520981211C136119220 @default.
- W1520981211 hasConceptScore W1520981211C138885662 @default.
- W1520981211 hasConceptScore W1520981211C167729594 @default.
- W1520981211 hasConceptScore W1520981211C178790620 @default.
- W1520981211 hasConceptScore W1520981211C185592680 @default.
- W1520981211 hasConceptScore W1520981211C202444582 @default.
- W1520981211 hasConceptScore W1520981211C2524010 @default.
- W1520981211 hasConceptScore W1520981211C2776639384 @default.
- W1520981211 hasConceptScore W1520981211C2780378348 @default.
- W1520981211 hasConceptScore W1520981211C33923547 @default.
- W1520981211 hasConceptScore W1520981211C46132437 @default.
- W1520981211 hasConceptScore W1520981211C90119067 @default.
- W1520981211 hasConceptScore W1520981211C9485509 @default.
- W1520981211 hasConceptScore W1520981211C9652623 @default.
- W1520981211 hasLocation W15209812111 @default.
- W1520981211 hasOpenAccess W1520981211 @default.
- W1520981211 hasPrimaryLocation W15209812111 @default.
- W1520981211 hasRelatedWork W1536283513 @default.
- W1520981211 hasRelatedWork W1545304260 @default.
- W1520981211 hasRelatedWork W1946971865 @default.
- W1520981211 hasRelatedWork W2009214473 @default.
- W1520981211 hasRelatedWork W2128062049 @default.
- W1520981211 hasRelatedWork W2347145711 @default.
- W1520981211 hasRelatedWork W2386888169 @default.
- W1520981211 hasRelatedWork W2510527647 @default.
- W1520981211 hasRelatedWork W2524603774 @default.
- W1520981211 hasRelatedWork W2963086803 @default.
- W1520981211 hasRelatedWork W2963267007 @default.
- W1520981211 hasRelatedWork W2963831230 @default.
- W1520981211 hasRelatedWork W2982880889 @default.
- W1520981211 hasRelatedWork W3105869962 @default.
- W1520981211 hasRelatedWork W3175879018 @default.
- W1520981211 hasRelatedWork W411991197 @default.
- W1520981211 hasRelatedWork W44782612 @default.
- W1520981211 hasRelatedWork W587595206 @default.
- W1520981211 hasRelatedWork W75169084 @default.
- W1520981211 hasRelatedWork W2182676917 @default.
- W1520981211 isParatext "false" @default.
- W1520981211 isRetracted "false" @default.
- W1520981211 magId "1520981211" @default.
- W1520981211 workType "article" @default.