Matches in SemOpenAlex for { <https://semopenalex.org/work/W152123067> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W152123067 endingPage "362" @default.
- W152123067 startingPage "339" @default.
- W152123067 abstract "Bioinformatics clustering tools are useful at all levels of proteomic data analysis. Proteomics studies can provide a wealth of information and rapidly generate large quantities of data from the analysis of biological specimens from healthy and diseased individuals. The high dimensionality of data generated from these studies requires the development of improved bioinformatics tools for efficient and accurate data analysis. For proteome profiling of a particular system or organism, specialized software tools are necessary. However, there have not been significant advances in the informatics and software tools necessary to support the analysis and management of the massive amounts of data generated in the process. Clustering algorithms based on probabilistic and Bayesian models provide an alternative to heuristic algorithms. The number of diseased and non-diseased groups (number of clusters) is reduced to the choice of the number of component of a mixture of underlying probability. Bayesian approach is a tool for including information from the data to the analysis. It offers an estimation of the uncertainties of the data and the parameters involved. We present novel algorithms that cluster and derive meaningful patterns of expression from large scaled proteomics experiments. We processed raw data using principal component analysis to reduce the number of peaks. Bayesian model-based clustering algorithm was then used on the transformed data. The Bayesian model-based approach has shown a superior performance, consistently selecting the correct model and the number of clusters, thus providing a novel approach for accurate diagnosis of the disease." @default.
- W152123067 created "2016-06-24" @default.
- W152123067 creator A5013350725 @default.
- W152123067 creator A5025982554 @default.
- W152123067 creator A5066466430 @default.
- W152123067 date "2008-12-06" @default.
- W152123067 modified "2023-10-05" @default.
- W152123067 title "Clustering Proteomics Data Using Bayesian Principal Component Analysis" @default.
- W152123067 cites W1573175260 @default.
- W152123067 cites W1974830441 @default.
- W152123067 cites W1985594509 @default.
- W152123067 cites W1994326152 @default.
- W152123067 cites W2008689893 @default.
- W152123067 cites W2018840890 @default.
- W152123067 cites W2038885294 @default.
- W152123067 cites W2040278857 @default.
- W152123067 cites W2047253724 @default.
- W152123067 cites W2058446582 @default.
- W152123067 cites W2071128523 @default.
- W152123067 cites W2078513725 @default.
- W152123067 cites W2080128182 @default.
- W152123067 cites W2082503527 @default.
- W152123067 cites W2085572798 @default.
- W152123067 cites W2086125239 @default.
- W152123067 cites W2091524256 @default.
- W152123067 cites W2093243674 @default.
- W152123067 cites W2108725536 @default.
- W152123067 cites W2112750635 @default.
- W152123067 cites W2117098825 @default.
- W152123067 cites W2119908867 @default.
- W152123067 cites W2134389439 @default.
- W152123067 cites W2146646206 @default.
- W152123067 cites W2161768644 @default.
- W152123067 cites W2168175751 @default.
- W152123067 cites W2242071559 @default.
- W152123067 cites W2271902495 @default.
- W152123067 cites W2488678869 @default.
- W152123067 cites W4236253072 @default.
- W152123067 cites W4237222446 @default.
- W152123067 cites W4237377395 @default.
- W152123067 cites W4242476313 @default.
- W152123067 cites W4248663717 @default.
- W152123067 cites W4249589601 @default.
- W152123067 cites W4252268551 @default.
- W152123067 doi "https://doi.org/10.1007/978-0-387-69319-4_19" @default.
- W152123067 hasPublicationYear "2008" @default.
- W152123067 type Work @default.
- W152123067 sameAs 152123067 @default.
- W152123067 citedByCount "2" @default.
- W152123067 countsByYear W1521230672018 @default.
- W152123067 crossrefType "book-chapter" @default.
- W152123067 hasAuthorship W152123067A5013350725 @default.
- W152123067 hasAuthorship W152123067A5025982554 @default.
- W152123067 hasAuthorship W152123067A5066466430 @default.
- W152123067 hasConcept C107673813 @default.
- W152123067 hasConcept C124101348 @default.
- W152123067 hasConcept C154945302 @default.
- W152123067 hasConcept C27438332 @default.
- W152123067 hasConcept C41008148 @default.
- W152123067 hasConcept C73555534 @default.
- W152123067 hasConceptScore W152123067C107673813 @default.
- W152123067 hasConceptScore W152123067C124101348 @default.
- W152123067 hasConceptScore W152123067C154945302 @default.
- W152123067 hasConceptScore W152123067C27438332 @default.
- W152123067 hasConceptScore W152123067C41008148 @default.
- W152123067 hasConceptScore W152123067C73555534 @default.
- W152123067 hasLocation W1521230671 @default.
- W152123067 hasOpenAccess W152123067 @default.
- W152123067 hasPrimaryLocation W1521230671 @default.
- W152123067 hasRelatedWork W1803249363 @default.
- W152123067 hasRelatedWork W2008302898 @default.
- W152123067 hasRelatedWork W2018199316 @default.
- W152123067 hasRelatedWork W2125310307 @default.
- W152123067 hasRelatedWork W2138351929 @default.
- W152123067 hasRelatedWork W2387873105 @default.
- W152123067 hasRelatedWork W2413640221 @default.
- W152123067 hasRelatedWork W3011385630 @default.
- W152123067 hasRelatedWork W3040519971 @default.
- W152123067 hasRelatedWork W2187875711 @default.
- W152123067 isParatext "false" @default.
- W152123067 isRetracted "false" @default.
- W152123067 magId "152123067" @default.
- W152123067 workType "book-chapter" @default.