Matches in SemOpenAlex for { <https://semopenalex.org/work/W1521762268> ?p ?o ?g. }
- W1521762268 endingPage "238" @default.
- W1521762268 startingPage "221" @default.
- W1521762268 abstract "The acropetal water refilling kinetics of the dry xylem of branches (up to 80 cm tall) of the resurrection plant Myrothamnus flabellifolia were determined with high temporal resolution by observation of light refraction at the advancing water front and the associated recurving of the folded leaves. To study the effect of gravity on water rise, data were acquired for cut upright, horizontal and inverted branches. Water rise kinetics were also determined with hydrostatic and osmotic pressure as well as at elevated temperatures (up to 100 degrees C) under laboratory conditions and compared with those obtained with intact (rooted) and cut branches under field conditions. Experiments in which water climbed under its capillary pressure alone, showed that the axial flow occurred only in a very few conducting elements at a much higher rate than in many of the other ones. The onset of transpiration of the unfolded and green leaves did not affect the rise kinetics in the 'prominent' conducting elements. Application of pressure apparently increased the number of elements making a major contribution to axial xylem flow. Analysis of these data in terms of capillary-pressure-driven water ascent in leaky capillaries demonstrated that root pressure, not capillary pressure, is the dominant force for rehydration of rooted, dry plants. The main reasons for the failure of capillary forces in xylem refilling were the small, rate-limiting effective radii of the conducting elements for axial water ascent (c. 1 micrometer compared with radii of the vessels and tracheids of c. 18 micrometers and 3 micrometers, respectively) and the very poor wetting of the dry walls. The contact (wetting) angles were of the order of 80 degrees and decreased on root or externally applied hydrostatic pressure. This supported our previous assumption that the inner walls of the dry conducting elements are covered with a lipid layer that is removed or disintegrates upon wetting. Consistent with this, potassium chloride and, particularly, sugars exerted an osmotic pressure effect on axial water climbing (reflection coefficients > zero, but small). Although the osmotically active solutes apparently suppressed radial water spread through the tissue to the leaf cells, they reduced the axial water ascent rather than accelerating it as predicted by the theory of capillary-driven water rise in leaky capillaries. Killing cells by heat treatment and removal of the bark, phelloderm, cortex and phloem also resulted in a reduction of the axial rise rate and final height. These observations demonstrated that radial water movement driven by the developing osmotic and turgor pressure in the living cells was important for the removal of the lipid layer from the walls of those conducting elements that were primarily not involved in water rise. There is some evidence from field measurements of the axial temperature gradients along rooted branches that interfacial (Marangoni) streaming facilitated lipid removal (under formation of vesicle-like structures and lipid bodies) upon wetting. Grant numbers: 50WB 9643, Zi 99/9-1." @default.
- W1521762268 created "2016-06-24" @default.
- W1521762268 creator A5001722677 @default.
- W1521762268 creator A5009405477 @default.
- W1521762268 creator A5016549912 @default.
- W1521762268 creator A5050818691 @default.
- W1521762268 creator A5054151098 @default.
- W1521762268 date "2000-11-27" @default.
- W1521762268 modified "2023-09-27" @default.
- W1521762268 title "Water rise kinetics in refilling xylem after desiccation in a resurrection plant" @default.
- W1521762268 cites W139298314 @default.
- W1521762268 cites W1485821290 @default.
- W1521762268 cites W1494409743 @default.
- W1521762268 cites W1542860029 @default.
- W1521762268 cites W1614892818 @default.
- W1521762268 cites W167580661 @default.
- W1521762268 cites W1752638864 @default.
- W1521762268 cites W1964717360 @default.
- W1521762268 cites W1971201850 @default.
- W1521762268 cites W1976734414 @default.
- W1521762268 cites W1979363157 @default.
- W1521762268 cites W1980765340 @default.
- W1521762268 cites W1982544937 @default.
- W1521762268 cites W1984823265 @default.
- W1521762268 cites W1985315642 @default.
- W1521762268 cites W1995918446 @default.
- W1521762268 cites W2006080544 @default.
- W1521762268 cites W2006699869 @default.
- W1521762268 cites W2009160379 @default.
- W1521762268 cites W2013079264 @default.
- W1521762268 cites W2013676079 @default.
- W1521762268 cites W2029263787 @default.
- W1521762268 cites W2032372876 @default.
- W1521762268 cites W2033819092 @default.
- W1521762268 cites W2034531278 @default.
- W1521762268 cites W2042194047 @default.
- W1521762268 cites W2049079573 @default.
- W1521762268 cites W2052257845 @default.
- W1521762268 cites W2053447043 @default.
- W1521762268 cites W2058046601 @default.
- W1521762268 cites W2060678577 @default.
- W1521762268 cites W2062070676 @default.
- W1521762268 cites W2068688137 @default.
- W1521762268 cites W2075327335 @default.
- W1521762268 cites W2075466234 @default.
- W1521762268 cites W2081973873 @default.
- W1521762268 cites W2083862445 @default.
- W1521762268 cites W2088082260 @default.
- W1521762268 cites W2113231298 @default.
- W1521762268 cites W2120646509 @default.
- W1521762268 cites W2141619405 @default.
- W1521762268 cites W2156206406 @default.
- W1521762268 cites W2312635981 @default.
- W1521762268 cites W2324610737 @default.
- W1521762268 cites W2332745978 @default.
- W1521762268 cites W2487211677 @default.
- W1521762268 cites W2797349022 @default.
- W1521762268 cites W2892994783 @default.
- W1521762268 cites W3106943482 @default.
- W1521762268 cites W992860623 @default.
- W1521762268 cites W2035996277 @default.
- W1521762268 doi "https://doi.org/10.1046/j.1469-8137.2000.00759.x" @default.
- W1521762268 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11676448" @default.
- W1521762268 hasPublicationYear "2000" @default.
- W1521762268 type Work @default.
- W1521762268 sameAs 1521762268 @default.
- W1521762268 citedByCount "41" @default.
- W1521762268 countsByYear W15217622682012 @default.
- W1521762268 countsByYear W15217622682013 @default.
- W1521762268 countsByYear W15217622682014 @default.
- W1521762268 countsByYear W15217622682018 @default.
- W1521762268 countsByYear W15217622682019 @default.
- W1521762268 countsByYear W15217622682022 @default.
- W1521762268 crossrefType "journal-article" @default.
- W1521762268 hasAuthorship W1521762268A5001722677 @default.
- W1521762268 hasAuthorship W1521762268A5009405477 @default.
- W1521762268 hasAuthorship W1521762268A5016549912 @default.
- W1521762268 hasAuthorship W1521762268A5050818691 @default.
- W1521762268 hasAuthorship W1521762268A5054151098 @default.
- W1521762268 hasConcept C100701293 @default.
- W1521762268 hasConcept C105569014 @default.
- W1521762268 hasConcept C121332964 @default.
- W1521762268 hasConcept C127313418 @default.
- W1521762268 hasConcept C134853933 @default.
- W1521762268 hasConcept C148898269 @default.
- W1521762268 hasConcept C157517311 @default.
- W1521762268 hasConcept C159390177 @default.
- W1521762268 hasConcept C159985019 @default.
- W1521762268 hasConcept C162838533 @default.
- W1521762268 hasConcept C178790620 @default.
- W1521762268 hasConcept C183688256 @default.
- W1521762268 hasConcept C185592680 @default.
- W1521762268 hasConcept C192562407 @default.
- W1521762268 hasConcept C196806460 @default.
- W1521762268 hasConcept C2778409621 @default.
- W1521762268 hasConcept C2910081258 @default.
- W1521762268 hasConcept C2988574769 @default.
- W1521762268 hasConcept C48797263 @default.