Matches in SemOpenAlex for { <https://semopenalex.org/work/W1523097535> ?p ?o ?g. }
- W1523097535 abstract "[1] Research into the role of catchment vegetation within the hydrologic cycle has a long history in the hydrologic literature. Relationships between vegetation type and catchment evapotranspiration and runoff were primarily assessed through paired catchment studies during the 20th century. Results from over 200 paired catchment studies from around the world have been reported in the literature. Two constraints on utilizing the results from paired catchment studies in the wider domain have been that the catchment areas studied are generally (1) small (<10 km2) and (2) from a narrow range of climate types. The majority of reported paired catchment studies are located in the USA (∼47%) and Australia (∼27%) and experience mainly temperate (Köppen C) and cold (Köppen D) climate types. In this paper we assess the impact of vegetation type on mean annual evapotranspiration through a large, spatially, and climatically diverse data set of 699 catchments from around the world. These catchments are a subset of 861 unregulated catchments considered for the analysis. Spatially averaged precipitation and temperature data, in conjunction with runoff and land cover information, are analyzed to draw broad conclusions about the vegetation impact on mean annual evapotranspiration. In this analysis any vegetation impact signal is assessed through differences in long-term catchment average actual evapotranspiration, defined as precipitation minus runoff, between catchments grouped by vegetation type. This methodology differs from paired catchment studies where vegetation impact is assessed through streamflow responses to a controlled, within catchment, land cover change. The importance of taking the climate type experienced by the catchments into account when assessing the vegetation impact on evapotranspiration is demonstrated. Tropical and temperate forested catchments are found to have statistically significant higher median evapotranspiration, by about 170 mm and 130 mm, respectively, than non-forested catchments. Unexpectedly, cold forested catchments exhibit significantly lower median evapotranspiration, by about 90 mm, than non-forested catchments. No significant difference was found between median evapotranspiration of temperate evergreen and deciduous forested catchments though sample sizes were small. Temperate evergreen needleleaf forested catchments were found to have significantly higher median evapotranspiration than evergreen broadleaf forested catchments though sample sizes were small. The significant temperate forest versus non-forest difference in median evapotranspiration was found to persist for catchments with areas <1,000 km2, but not for catchments with areas ≥1,000 km2, which is consistent with the suggestion that the vegetation impact on evapotranspiration diminishes as catchment area increases. In summary, the results presented here are consistent with those drawn from reviews of paired catchment results. However, this paper demonstrates the value of a diverse hydroclimatic data set when assessing the vegetation impact on evapotranspiration as the magnitude of impact is observed to vary across climate types." @default.
- W1523097535 created "2016-06-24" @default.
- W1523097535 creator A5023992050 @default.
- W1523097535 creator A5063349644 @default.
- W1523097535 creator A5084550207 @default.
- W1523097535 date "2010-09-01" @default.
- W1523097535 modified "2023-10-11" @default.
- W1523097535 title "Vegetation impact on mean annual evapotranspiration at a global catchment scale" @default.
- W1523097535 cites W1542005766 @default.
- W1523097535 cites W1649711606 @default.
- W1523097535 cites W1763835508 @default.
- W1523097535 cites W1965387644 @default.
- W1523097535 cites W1971911655 @default.
- W1523097535 cites W1976095361 @default.
- W1523097535 cites W1976269593 @default.
- W1523097535 cites W1981262008 @default.
- W1523097535 cites W1982317067 @default.
- W1523097535 cites W1984381123 @default.
- W1523097535 cites W1984823613 @default.
- W1523097535 cites W1985949400 @default.
- W1523097535 cites W2028554047 @default.
- W1523097535 cites W2035732703 @default.
- W1523097535 cites W2047434666 @default.
- W1523097535 cites W2049231788 @default.
- W1523097535 cites W2051612069 @default.
- W1523097535 cites W2078252173 @default.
- W1523097535 cites W2078580016 @default.
- W1523097535 cites W2100422466 @default.
- W1523097535 cites W2101108516 @default.
- W1523097535 cites W2104676838 @default.
- W1523097535 cites W2117688097 @default.
- W1523097535 cites W2124099423 @default.
- W1523097535 cites W2126800465 @default.
- W1523097535 cites W2131781054 @default.
- W1523097535 cites W2133850095 @default.
- W1523097535 cites W2136243277 @default.
- W1523097535 cites W2137152840 @default.
- W1523097535 cites W2148888430 @default.
- W1523097535 cites W2148989614 @default.
- W1523097535 cites W2150849744 @default.
- W1523097535 cites W2179553052 @default.
- W1523097535 doi "https://doi.org/10.1029/2009wr008233" @default.
- W1523097535 hasPublicationYear "2010" @default.
- W1523097535 type Work @default.
- W1523097535 sameAs 1523097535 @default.
- W1523097535 citedByCount "112" @default.
- W1523097535 countsByYear W15230975352012 @default.
- W1523097535 countsByYear W15230975352013 @default.
- W1523097535 countsByYear W15230975352014 @default.
- W1523097535 countsByYear W15230975352015 @default.
- W1523097535 countsByYear W15230975352016 @default.
- W1523097535 countsByYear W15230975352017 @default.
- W1523097535 countsByYear W15230975352018 @default.
- W1523097535 countsByYear W15230975352019 @default.
- W1523097535 countsByYear W15230975352020 @default.
- W1523097535 countsByYear W15230975352021 @default.
- W1523097535 countsByYear W15230975352022 @default.
- W1523097535 countsByYear W15230975352023 @default.
- W1523097535 crossrefType "journal-article" @default.
- W1523097535 hasAuthorship W1523097535A5023992050 @default.
- W1523097535 hasAuthorship W1523097535A5063349644 @default.
- W1523097535 hasAuthorship W1523097535A5084550207 @default.
- W1523097535 hasBestOaLocation W15230975351 @default.
- W1523097535 hasConcept C107054158 @default.
- W1523097535 hasConcept C108352090 @default.
- W1523097535 hasConcept C126645576 @default.
- W1523097535 hasConcept C127313418 @default.
- W1523097535 hasConcept C132651083 @default.
- W1523097535 hasConcept C133830359 @default.
- W1523097535 hasConcept C142724271 @default.
- W1523097535 hasConcept C153294291 @default.
- W1523097535 hasConcept C176783924 @default.
- W1523097535 hasConcept C187320778 @default.
- W1523097535 hasConcept C18903297 @default.
- W1523097535 hasConcept C205649164 @default.
- W1523097535 hasConcept C2775835988 @default.
- W1523097535 hasConcept C2776133958 @default.
- W1523097535 hasConcept C2778898053 @default.
- W1523097535 hasConcept C2780648208 @default.
- W1523097535 hasConcept C39432304 @default.
- W1523097535 hasConcept C4792198 @default.
- W1523097535 hasConcept C50477045 @default.
- W1523097535 hasConcept C53739315 @default.
- W1523097535 hasConcept C58640448 @default.
- W1523097535 hasConcept C71924100 @default.
- W1523097535 hasConcept C76886044 @default.
- W1523097535 hasConcept C81461190 @default.
- W1523097535 hasConcept C86803240 @default.
- W1523097535 hasConceptScore W1523097535C107054158 @default.
- W1523097535 hasConceptScore W1523097535C108352090 @default.
- W1523097535 hasConceptScore W1523097535C126645576 @default.
- W1523097535 hasConceptScore W1523097535C127313418 @default.
- W1523097535 hasConceptScore W1523097535C132651083 @default.
- W1523097535 hasConceptScore W1523097535C133830359 @default.
- W1523097535 hasConceptScore W1523097535C142724271 @default.
- W1523097535 hasConceptScore W1523097535C153294291 @default.
- W1523097535 hasConceptScore W1523097535C176783924 @default.
- W1523097535 hasConceptScore W1523097535C187320778 @default.
- W1523097535 hasConceptScore W1523097535C18903297 @default.
- W1523097535 hasConceptScore W1523097535C205649164 @default.