Matches in SemOpenAlex for { <https://semopenalex.org/work/W152373325> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W152373325 abstract "Identification and control of nonlinear dynamic systems are typically established on a case-by-case basis, since there are no general methods for, at least, a large class of such systems. Recurrent Neural networks (RNNs) have the potential to model nonlinear dynamic systems due to the fact that: (1) they have the ability to learn the nonlinear relationship between the input and the output of the system, (2) the information at the output is fed hack to the input, thus creating a non-linear dynamic mapping. This dissertation presents a new RNN especially useful for system identification of highly nonlinear dynamic systems such as robot manipulators. This RNN is composed of a linear dynamic network, cascaded with a nonlinear static network. It is analytically proved that this network is capable of modeling a large class: of single-input as well as multi-input nonlinear dynamic systems by showing its equivalence to the Volterra series expansion of such systems. Therefore this new RNN possesses the approximation power of the Volterra series, and is called the Volterra Network. A two-method learning scheme is proposed for the Volterra network. For the linear dynamic network a new learning algorithm is proposed, based on Prony analysis. The nonlinear static network can be trained using any method appropriate for feedforward networks, such as the back-propagation algorithm. The operation of the Volterra Network is demonstrated using examples of single-input as well as multi-input nonlinear dynamic systems. The advantage of the proposed RNN is that there exist well-known mathematical tools to analyze the behavior of the subnetworks of the Volterra network. Moreover, due to the proposed training schemes the nonlinear dynamic system can be considered as a black-box, hence there is no need for a priori knowledge of the system under investigation. The simulation results clearly demonstrate the efficiency of the Volterra network, since the error between the desired and actual outputs is very small, and remains virtually constant even during the testing phase of the Volterra network." @default.
- W152373325 created "2016-06-24" @default.
- W152373325 creator A5084539076 @default.
- W152373325 date "1996-01-01" @default.
- W152373325 modified "2023-09-27" @default.
- W152373325 title "Identification of nonlinear dynamic systems using the volterra network" @default.
- W152373325 hasPublicationYear "1996" @default.
- W152373325 type Work @default.
- W152373325 sameAs 152373325 @default.
- W152373325 citedByCount "1" @default.
- W152373325 crossrefType "journal-article" @default.
- W152373325 hasAuthorship W152373325A5084539076 @default.
- W152373325 hasConcept C119247159 @default.
- W152373325 hasConcept C121332964 @default.
- W152373325 hasConcept C127413603 @default.
- W152373325 hasConcept C133731056 @default.
- W152373325 hasConcept C13540734 @default.
- W152373325 hasConcept C147168706 @default.
- W152373325 hasConcept C154945302 @default.
- W152373325 hasConcept C158622935 @default.
- W152373325 hasConcept C22157029 @default.
- W152373325 hasConcept C2775924081 @default.
- W152373325 hasConcept C2778532037 @default.
- W152373325 hasConcept C31258907 @default.
- W152373325 hasConcept C38858127 @default.
- W152373325 hasConcept C41008148 @default.
- W152373325 hasConcept C47446073 @default.
- W152373325 hasConcept C50644808 @default.
- W152373325 hasConcept C62520636 @default.
- W152373325 hasConcept C67186912 @default.
- W152373325 hasConcept C77088390 @default.
- W152373325 hasConceptScore W152373325C119247159 @default.
- W152373325 hasConceptScore W152373325C121332964 @default.
- W152373325 hasConceptScore W152373325C127413603 @default.
- W152373325 hasConceptScore W152373325C133731056 @default.
- W152373325 hasConceptScore W152373325C13540734 @default.
- W152373325 hasConceptScore W152373325C147168706 @default.
- W152373325 hasConceptScore W152373325C154945302 @default.
- W152373325 hasConceptScore W152373325C158622935 @default.
- W152373325 hasConceptScore W152373325C22157029 @default.
- W152373325 hasConceptScore W152373325C2775924081 @default.
- W152373325 hasConceptScore W152373325C2778532037 @default.
- W152373325 hasConceptScore W152373325C31258907 @default.
- W152373325 hasConceptScore W152373325C38858127 @default.
- W152373325 hasConceptScore W152373325C41008148 @default.
- W152373325 hasConceptScore W152373325C47446073 @default.
- W152373325 hasConceptScore W152373325C50644808 @default.
- W152373325 hasConceptScore W152373325C62520636 @default.
- W152373325 hasConceptScore W152373325C67186912 @default.
- W152373325 hasConceptScore W152373325C77088390 @default.
- W152373325 hasLocation W1523733251 @default.
- W152373325 hasOpenAccess W152373325 @default.
- W152373325 hasPrimaryLocation W1523733251 @default.
- W152373325 hasRelatedWork W1502369731 @default.
- W152373325 hasRelatedWork W1551803855 @default.
- W152373325 hasRelatedWork W1813867665 @default.
- W152373325 hasRelatedWork W1914893978 @default.
- W152373325 hasRelatedWork W2024011181 @default.
- W152373325 hasRelatedWork W2046503713 @default.
- W152373325 hasRelatedWork W2090382790 @default.
- W152373325 hasRelatedWork W2093519017 @default.
- W152373325 hasRelatedWork W2105145875 @default.
- W152373325 hasRelatedWork W2106753233 @default.
- W152373325 hasRelatedWork W2128833259 @default.
- W152373325 hasRelatedWork W2130652610 @default.
- W152373325 hasRelatedWork W2139011379 @default.
- W152373325 hasRelatedWork W2166413532 @default.
- W152373325 hasRelatedWork W2376399116 @default.
- W152373325 hasRelatedWork W2385274843 @default.
- W152373325 hasRelatedWork W2386452714 @default.
- W152373325 hasRelatedWork W2500406476 @default.
- W152373325 hasRelatedWork W2535296732 @default.
- W152373325 hasRelatedWork W2728815591 @default.
- W152373325 isParatext "false" @default.
- W152373325 isRetracted "false" @default.
- W152373325 magId "152373325" @default.
- W152373325 workType "article" @default.