Matches in SemOpenAlex for { <https://semopenalex.org/work/W1523843467> ?p ?o ?g. }
- W1523843467 abstract "Abstract Background The extensive use of DNA microarray technology in the characterization of the cell transcriptome is leading to an ever increasing amount of microarray data from cancer studies. Although similar questions for the same type of cancer are addressed in these different studies, a comparative analysis of their results is hampered by the use of heterogeneous microarray platforms and analysis methods. Results In contrast to a meta-analysis approach where results of different studies are combined on an interpretative level, we investigate here how to directly integrate raw microarray data from different studies for the purpose of supervised classification analysis. We use median rank scores and quantile discretization to derive numerically comparable measures of gene expression from different platforms. These transformed data are then used for training of classifiers based on support vector machines. We apply this approach to six publicly available cancer microarray gene expression data sets, which consist of three pairs of studies, each examining the same type of cancer, i.e. breast cancer, prostate cancer or acute myeloid leukemia. For each pair, one study was performed by means of cDNA microarrays and the other by means of oligonucleotide microarrays. In each pair, high classification accuracies (> 85%) were achieved with training and testing on data instances randomly chosen from both data sets in a cross-validation analysis. To exemplify the potential of this cross-platform classification analysis, we use two leukemia microarray data sets to show that important genes with regard to the biology of leukemia are selected in an integrated analysis, which are missed in either single-set analysis. Conclusion Cross-platform classification of multiple cancer microarray data sets yields discriminative gene expression signatures that are found and validated on a large number of microarray samples, generated by different laboratories and microarray technologies. Predictive models generated by this approach are better validated than those generated on a single data set, while showing high predictive power and improved generalization performance." @default.
- W1523843467 created "2016-06-24" @default.
- W1523843467 creator A5044191947 @default.
- W1523843467 creator A5057450854 @default.
- W1523843467 creator A5078039033 @default.
- W1523843467 date "2005-11-04" @default.
- W1523843467 modified "2023-10-10" @default.
- W1523843467 title "Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes" @default.
- W1523843467 cites W1534965621 @default.
- W1523843467 cites W1544923801 @default.
- W1523843467 cites W1545398558 @default.
- W1523843467 cites W1559197668 @default.
- W1523843467 cites W1571917377 @default.
- W1523843467 cites W1651215666 @default.
- W1523843467 cites W1800724332 @default.
- W1523843467 cites W1991509879 @default.
- W1523843467 cites W1996647803 @default.
- W1523843467 cites W2036902495 @default.
- W1523843467 cites W2041027929 @default.
- W1523843467 cites W2060205066 @default.
- W1523843467 cites W2089629155 @default.
- W1523843467 cites W2091947792 @default.
- W1523843467 cites W2096901589 @default.
- W1523843467 cites W2098509901 @default.
- W1523843467 cites W2109363337 @default.
- W1523843467 cites W2110502951 @default.
- W1523843467 cites W2111513463 @default.
- W1523843467 cites W2112865076 @default.
- W1523843467 cites W2113128520 @default.
- W1523843467 cites W2113367077 @default.
- W1523843467 cites W2115580179 @default.
- W1523843467 cites W2120865735 @default.
- W1523843467 cites W2122598723 @default.
- W1523843467 cites W2122832739 @default.
- W1523843467 cites W2124201592 @default.
- W1523843467 cites W2124373444 @default.
- W1523843467 cites W2128985829 @default.
- W1523843467 cites W2132912591 @default.
- W1523843467 cites W2133922879 @default.
- W1523843467 cites W2135511047 @default.
- W1523843467 cites W2137476312 @default.
- W1523843467 cites W2138069312 @default.
- W1523843467 cites W2138550913 @default.
- W1523843467 cites W2139954541 @default.
- W1523843467 cites W2143033696 @default.
- W1523843467 cites W2143426320 @default.
- W1523843467 cites W2147567567 @default.
- W1523843467 cites W2150470057 @default.
- W1523843467 cites W2152155643 @default.
- W1523843467 cites W2153201655 @default.
- W1523843467 cites W2156031219 @default.
- W1523843467 cites W2157531738 @default.
- W1523843467 cites W2157646587 @default.
- W1523843467 cites W2158940923 @default.
- W1523843467 cites W2168561598 @default.
- W1523843467 cites W2318935314 @default.
- W1523843467 cites W75709240 @default.
- W1523843467 doi "https://doi.org/10.1186/1471-2105-6-265" @default.
- W1523843467 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1312314" @default.
- W1523843467 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16271137" @default.
- W1523843467 hasPublicationYear "2005" @default.
- W1523843467 type Work @default.
- W1523843467 sameAs 1523843467 @default.
- W1523843467 citedByCount "206" @default.
- W1523843467 countsByYear W15238434672012 @default.
- W1523843467 countsByYear W15238434672013 @default.
- W1523843467 countsByYear W15238434672014 @default.
- W1523843467 countsByYear W15238434672015 @default.
- W1523843467 countsByYear W15238434672016 @default.
- W1523843467 countsByYear W15238434672017 @default.
- W1523843467 countsByYear W15238434672018 @default.
- W1523843467 countsByYear W15238434672019 @default.
- W1523843467 countsByYear W15238434672020 @default.
- W1523843467 countsByYear W15238434672021 @default.
- W1523843467 countsByYear W15238434672022 @default.
- W1523843467 countsByYear W15238434672023 @default.
- W1523843467 crossrefType "journal-article" @default.
- W1523843467 hasAuthorship W1523843467A5044191947 @default.
- W1523843467 hasAuthorship W1523843467A5057450854 @default.
- W1523843467 hasAuthorship W1523843467A5078039033 @default.
- W1523843467 hasBestOaLocation W15238434671 @default.
- W1523843467 hasConcept C104317684 @default.
- W1523843467 hasConcept C124101348 @default.
- W1523843467 hasConcept C150194340 @default.
- W1523843467 hasConcept C18431079 @default.
- W1523843467 hasConcept C186836561 @default.
- W1523843467 hasConcept C24361400 @default.
- W1523843467 hasConcept C41008148 @default.
- W1523843467 hasConcept C54355233 @default.
- W1523843467 hasConcept C548314002 @default.
- W1523843467 hasConcept C60644358 @default.
- W1523843467 hasConcept C70721500 @default.
- W1523843467 hasConcept C8415881 @default.
- W1523843467 hasConcept C86803240 @default.
- W1523843467 hasConcept C95371953 @default.
- W1523843467 hasConceptScore W1523843467C104317684 @default.
- W1523843467 hasConceptScore W1523843467C124101348 @default.
- W1523843467 hasConceptScore W1523843467C150194340 @default.
- W1523843467 hasConceptScore W1523843467C18431079 @default.
- W1523843467 hasConceptScore W1523843467C186836561 @default.