Matches in SemOpenAlex for { <https://semopenalex.org/work/W1524559426> ?p ?o ?g. }
- W1524559426 abstract "Prediction of biochemical (metabolic) pathways has a wide range of applications, including the optimization of drug candidates, and the elucidation of toxicity mechanisms. Recently, several methods have been developed for pathway prediction to derive a goal compound from a start compound. However, these methods require high computational costs, and cannot perform comprehensive prediction of novel metabolic pathways. Our aim of this study is to develop a de novo prediction method for reconstructions of metabolic pathways and predictions of unknown biosynthetic pathways in the sense that it does not require any initial network such as KEGG metabolic network to be explored.We formulated pathway prediction between a start compound and a goal compound as the shortest path search problem in terms of the number of enzyme reactions applied. We propose an efficient search method based on A* algorithm and heuristic techniques utilizing Linear Programming (LP) solution for estimation of the distance to the goal. First, a chemical compound is represented by a feature vector which counts frequencies of substructure occurrences in the structural formula. Second, an enzyme reaction is represented as an operator vector by detecting the structural changes to compounds before and after the reaction. By defining compound vectors as nodes and operator vectors as edges, prediction of the reaction pathway is reduced to the shortest path search problem in the vector space. In experiments on the DDT degradation pathway, we verify that the shortest paths predicted by our method are biologically correct pathways registered in the KEGG database. The results also demonstrate that the LP heuristics can achieve significant reduction in computation time. Furthermore, we apply our method to a secondary metabolite pathway of plant origin, and successfully find a novel biochemical pathway which cannot be predicted by the existing method. For the reconstruction of a known biochemical pathway, our method is over 40 times as fast as the existing method.Our method enables fast and accurate de novo pathway predictions and novel pathway detection." @default.
- W1524559426 created "2016-06-24" @default.
- W1524559426 creator A5025573915 @default.
- W1524559426 creator A5040750410 @default.
- W1524559426 creator A5042217933 @default.
- W1524559426 creator A5076175043 @default.
- W1524559426 creator A5076300103 @default.
- W1524559426 date "2012-12-01" @default.
- W1524559426 modified "2023-10-18" @default.
- W1524559426 title "An efficient algorithm for de novo predictions of biochemical pathways between chemical compounds" @default.
- W1524559426 cites W1797956629 @default.
- W1524559426 cites W1964232618 @default.
- W1524559426 cites W1967861313 @default.
- W1524559426 cites W1977464943 @default.
- W1524559426 cites W1978811796 @default.
- W1524559426 cites W1979537657 @default.
- W1524559426 cites W1986087295 @default.
- W1524559426 cites W1997996256 @default.
- W1524559426 cites W1998767819 @default.
- W1524559426 cites W2008077962 @default.
- W1524559426 cites W2044460131 @default.
- W1524559426 cites W2044694490 @default.
- W1524559426 cites W2058141842 @default.
- W1524559426 cites W2066220968 @default.
- W1524559426 cites W2077440882 @default.
- W1524559426 cites W2090486360 @default.
- W1524559426 cites W2100005623 @default.
- W1524559426 cites W2103626206 @default.
- W1524559426 cites W2104619491 @default.
- W1524559426 cites W2113422307 @default.
- W1524559426 cites W2113531097 @default.
- W1524559426 cites W2128338897 @default.
- W1524559426 cites W2132005946 @default.
- W1524559426 cites W2132468877 @default.
- W1524559426 cites W2137262074 @default.
- W1524559426 cites W2143000571 @default.
- W1524559426 cites W2145546477 @default.
- W1524559426 cites W2146382443 @default.
- W1524559426 cites W2148797284 @default.
- W1524559426 cites W2157985275 @default.
- W1524559426 cites W2162422091 @default.
- W1524559426 cites W2170427655 @default.
- W1524559426 cites W2172024214 @default.
- W1524559426 cites W2178117785 @default.
- W1524559426 doi "https://doi.org/10.1186/1471-2105-13-s17-s8" @default.
- W1524559426 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3521390" @default.
- W1524559426 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23282285" @default.
- W1524559426 hasPublicationYear "2012" @default.
- W1524559426 type Work @default.
- W1524559426 sameAs 1524559426 @default.
- W1524559426 citedByCount "19" @default.
- W1524559426 countsByYear W15245594262012 @default.
- W1524559426 countsByYear W15245594262013 @default.
- W1524559426 countsByYear W15245594262014 @default.
- W1524559426 countsByYear W15245594262015 @default.
- W1524559426 countsByYear W15245594262016 @default.
- W1524559426 countsByYear W15245594262017 @default.
- W1524559426 countsByYear W15245594262018 @default.
- W1524559426 countsByYear W15245594262019 @default.
- W1524559426 countsByYear W15245594262020 @default.
- W1524559426 countsByYear W15245594262023 @default.
- W1524559426 crossrefType "journal-article" @default.
- W1524559426 hasAuthorship W1524559426A5025573915 @default.
- W1524559426 hasAuthorship W1524559426A5040750410 @default.
- W1524559426 hasAuthorship W1524559426A5042217933 @default.
- W1524559426 hasAuthorship W1524559426A5076175043 @default.
- W1524559426 hasAuthorship W1524559426A5076300103 @default.
- W1524559426 hasBestOaLocation W15245594261 @default.
- W1524559426 hasConcept C101810790 @default.
- W1524559426 hasConcept C104317684 @default.
- W1524559426 hasConcept C11413529 @default.
- W1524559426 hasConcept C132525143 @default.
- W1524559426 hasConcept C150194340 @default.
- W1524559426 hasConcept C152724338 @default.
- W1524559426 hasConcept C162317418 @default.
- W1524559426 hasConcept C181199279 @default.
- W1524559426 hasConcept C192989942 @default.
- W1524559426 hasConcept C199360897 @default.
- W1524559426 hasConcept C22590252 @default.
- W1524559426 hasConcept C2777735758 @default.
- W1524559426 hasConcept C41008148 @default.
- W1524559426 hasConcept C55493867 @default.
- W1524559426 hasConcept C60644358 @default.
- W1524559426 hasConcept C70721500 @default.
- W1524559426 hasConcept C74187038 @default.
- W1524559426 hasConcept C80444323 @default.
- W1524559426 hasConcept C86803240 @default.
- W1524559426 hasConcept C99726746 @default.
- W1524559426 hasConceptScore W1524559426C101810790 @default.
- W1524559426 hasConceptScore W1524559426C104317684 @default.
- W1524559426 hasConceptScore W1524559426C11413529 @default.
- W1524559426 hasConceptScore W1524559426C132525143 @default.
- W1524559426 hasConceptScore W1524559426C150194340 @default.
- W1524559426 hasConceptScore W1524559426C152724338 @default.
- W1524559426 hasConceptScore W1524559426C162317418 @default.
- W1524559426 hasConceptScore W1524559426C181199279 @default.
- W1524559426 hasConceptScore W1524559426C192989942 @default.
- W1524559426 hasConceptScore W1524559426C199360897 @default.
- W1524559426 hasConceptScore W1524559426C22590252 @default.
- W1524559426 hasConceptScore W1524559426C2777735758 @default.