Matches in SemOpenAlex for { <https://semopenalex.org/work/W1524976123> ?p ?o ?g. }
- W1524976123 abstract "Organic–inorganic hybrid materials have attracted much attention in the field of materials science because of their great potential for use in a wide variety of applications through fusion of individual organic and inorganic properties (Schmidt, 1994; Mackenzie, 1994; Sanchez et al., 2001; Schottner, 2001). Up to the present time, various kinds of material combinations and synthetic strategies have been developed. The sol–gel method is one of the most powerful techniques to prepare hybrid materials and has provided moderate preparative conditions for the construction of inorganic oxide frameworks that are derived from hybrid materials (Sakka, 2005). In particular, the preparation of novel materials with organized nanostructures is a fascinating research subject in the field of hybrid materials (Ulman, 1996; Ozin, 2000; Dabbs & Aksay, 2000; Scott et al., 2001; van Bommel et al., 2003; Colfen & Mann, 2003). These approaches are generally based on sol–gel techniques that utilize the presence of molecular assemblies as templates, such as rod-like micelles (Yanagisawa et al., 1990; Kresge et al., 1992; Inagaki et al., 1999), block-copolymers (Kramer et al., 1998; Melosh et al., 1999; Ryoo et al., 2000), microemulsions (Sims et al., 1998; Feng et al., 2000), organogels (Ono et al., 1998), cast films of bilayer membranes (Sakata & Kunitake, 1990) and bilayer vesicles (Hubert et al., 2000). Thus, the properties of nanohybrids depend on their nanostructures, especially the structure at the interface between the inorganic and organic components. Pre-organization by employing non-covalent interactions between an organic template and an inorganic precursor is known to be very important. However, the interface between the organic and inorganic components in these hybrids seems to be structurally ambiguous and more difficult to control at the molecular level than the individual component structures. Additionally, most of these materials are composed of inorganic components alone, and the organic portions are simply employed as templates. In contrast, a novel class of layered organic–inorganic nanocomposites composed of amphiphilic molecules with a covalent bond between the silicate and the surfactant has been developed in recent years (Huo et al., 1996; Shimojima et al., 1997; Moreau et al., 2001; RuizHitzky et al., 2002; Zhang et al., 2004). These materials offer great potential because the hybrid precursors can form three-dimensional networks during the self-assembling process, whereby inorganic layers and organic moieties are covalently linked with stable Si–C bonds. We recently developed cerasomes, a novel type of organic–inorganic nanohybrid, through a combination of sol–gel reactions and self-assembling of lipidic organotrialkoxysilanes in aqueous media to form vesicles covered with silicate surfaces (Katagiri et al., 1999). A" @default.
- W1524976123 created "2016-06-24" @default.
- W1524976123 creator A5034283472 @default.
- W1524976123 creator A5052847980 @default.
- W1524976123 date "2011-04-26" @default.
- W1524976123 modified "2023-10-16" @default.
- W1524976123 title "Cerasomes: A New Family of Artificial Cell Membranes with Ceramic Surface" @default.
- W1524976123 cites W136551233 @default.
- W1524976123 cites W1553115130 @default.
- W1524976123 cites W1864216606 @default.
- W1524976123 cites W1966488528 @default.
- W1524976123 cites W1971290197 @default.
- W1524976123 cites W1975493559 @default.
- W1524976123 cites W1983031407 @default.
- W1524976123 cites W1984843409 @default.
- W1524976123 cites W1985033713 @default.
- W1524976123 cites W1988561114 @default.
- W1524976123 cites W1988591943 @default.
- W1524976123 cites W1990697823 @default.
- W1524976123 cites W1992238197 @default.
- W1524976123 cites W1994034175 @default.
- W1524976123 cites W1995691273 @default.
- W1524976123 cites W1995720987 @default.
- W1524976123 cites W1998551466 @default.
- W1524976123 cites W1998697301 @default.
- W1524976123 cites W2000966264 @default.
- W1524976123 cites W2006939298 @default.
- W1524976123 cites W2007260984 @default.
- W1524976123 cites W2009273153 @default.
- W1524976123 cites W2016694257 @default.
- W1524976123 cites W2017690254 @default.
- W1524976123 cites W2023403205 @default.
- W1524976123 cites W2027335547 @default.
- W1524976123 cites W2031135154 @default.
- W1524976123 cites W2038180510 @default.
- W1524976123 cites W2042110923 @default.
- W1524976123 cites W2042385789 @default.
- W1524976123 cites W2042602209 @default.
- W1524976123 cites W2043757208 @default.
- W1524976123 cites W2044703166 @default.
- W1524976123 cites W2046273496 @default.
- W1524976123 cites W2053038752 @default.
- W1524976123 cites W2056037149 @default.
- W1524976123 cites W2057573894 @default.
- W1524976123 cites W2068871812 @default.
- W1524976123 cites W2070113887 @default.
- W1524976123 cites W2070794824 @default.
- W1524976123 cites W2072770623 @default.
- W1524976123 cites W2078714443 @default.
- W1524976123 cites W2092782957 @default.
- W1524976123 cites W2093928491 @default.
- W1524976123 cites W2102414127 @default.
- W1524976123 cites W2103431073 @default.
- W1524976123 cites W2134819724 @default.
- W1524976123 cites W2162475282 @default.
- W1524976123 cites W2167319288 @default.
- W1524976123 cites W2171035775 @default.
- W1524976123 cites W2279630473 @default.
- W1524976123 cites W2499330961 @default.
- W1524976123 cites W2887223931 @default.
- W1524976123 cites W3022515699 @default.
- W1524976123 cites W323626394 @default.
- W1524976123 cites W40308801 @default.
- W1524976123 cites W654906453 @default.
- W1524976123 doi "https://doi.org/10.5772/14167" @default.
- W1524976123 hasPublicationYear "2011" @default.
- W1524976123 type Work @default.
- W1524976123 sameAs 1524976123 @default.
- W1524976123 citedByCount "2" @default.
- W1524976123 countsByYear W15249761232013 @default.
- W1524976123 countsByYear W15249761232022 @default.
- W1524976123 crossrefType "book-chapter" @default.
- W1524976123 hasAuthorship W1524976123A5034283472 @default.
- W1524976123 hasAuthorship W1524976123A5052847980 @default.
- W1524976123 hasBestOaLocation W15249761231 @default.
- W1524976123 hasConcept C134132462 @default.
- W1524976123 hasConcept C159985019 @default.
- W1524976123 hasConcept C171250308 @default.
- W1524976123 hasConcept C185592680 @default.
- W1524976123 hasConcept C192562407 @default.
- W1524976123 hasConcept C2524010 @default.
- W1524976123 hasConcept C2776799497 @default.
- W1524976123 hasConcept C33923547 @default.
- W1524976123 hasConcept C41625074 @default.
- W1524976123 hasConcept C55493867 @default.
- W1524976123 hasConceptScore W1524976123C134132462 @default.
- W1524976123 hasConceptScore W1524976123C159985019 @default.
- W1524976123 hasConceptScore W1524976123C171250308 @default.
- W1524976123 hasConceptScore W1524976123C185592680 @default.
- W1524976123 hasConceptScore W1524976123C192562407 @default.
- W1524976123 hasConceptScore W1524976123C2524010 @default.
- W1524976123 hasConceptScore W1524976123C2776799497 @default.
- W1524976123 hasConceptScore W1524976123C33923547 @default.
- W1524976123 hasConceptScore W1524976123C41625074 @default.
- W1524976123 hasConceptScore W1524976123C55493867 @default.
- W1524976123 hasLocation W15249761231 @default.
- W1524976123 hasLocation W15249761232 @default.
- W1524976123 hasOpenAccess W1524976123 @default.
- W1524976123 hasPrimaryLocation W15249761231 @default.
- W1524976123 hasRelatedWork W1515141332 @default.