Matches in SemOpenAlex for { <https://semopenalex.org/work/W1525050347> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W1525050347 abstract "[1] The determination of the parameters for hydrologic models has been the subject of a large number of studies during the last 3 decades. A multitude of methods have been developed for this purpose. Generally, the mismatch between the model simulations and the observations is lumped into an objective function, which is then is optimized by these methods. This can lead to parameter values that result in a good model performance under certain (e.g., low flow) conditions but not under other (e.g., high flow) conditions. The objective of this paper is to demonstrate a calibration algorithm which leads to a good model performance under all boundary conditions. This algorithm is referred to as Multistart Weight-Adaptive Recursive Parameter Estimation (MWARPE). For this purpose the equations of the Extended Kalman Filter (EKF) have been used recursively in a Monte-Carlo approach, strongly increasing the chance that a globally optimal parameter set is obtained instead of a local optimum. The method has been applied to a rainfall-runoff model for the Zwalm catchment in Belgium, using a 1-year, a 2-year, and a 3-year calibration period. The results have been compared to the Shuffled Complex Evolution (SCE)-UA method. A synthetic study revealed that for narrow parameter limits the SCE-UA algorithm outperformed MWARPE, while for broad parameter limits the opposite occurred. For the test case using in situ observed data, the SCE-UA method resulted in slightly lower RMSE values than MWARPE, but MWARPE performed better outside the calibration period. It has been found that MWARPE can bypass local optima in the determination of the final parameter set. Also, the best initial parameter sets (with the lowest RMSE) do not lead to the best final parameter values. To apply the method only four parameters need to be specified, more specifically the number of starting points, the number of iterations per starting point, one parameter used to initialize the model error covariance matrix, and the observation error. For this reason, the method could be a simple alternative to more complex methods if model parameters have to be determined when time and/or computational power are limited." @default.
- W1525050347 created "2016-06-24" @default.
- W1525050347 creator A5012590564 @default.
- W1525050347 date "2008-04-01" @default.
- W1525050347 modified "2023-10-16" @default.
- W1525050347 title "A multistart weight-adaptive recursive parameter estimation method" @default.
- W1525050347 cites W1500223589 @default.
- W1525050347 cites W1527594523 @default.
- W1525050347 cites W1667160246 @default.
- W1525050347 cites W1761851204 @default.
- W1525050347 cites W1909649765 @default.
- W1525050347 cites W1938086845 @default.
- W1525050347 cites W1963081695 @default.
- W1525050347 cites W1972396182 @default.
- W1525050347 cites W1989990681 @default.
- W1525050347 cites W2038107005 @default.
- W1525050347 cites W2040117584 @default.
- W1525050347 cites W2049177731 @default.
- W1525050347 cites W2050063558 @default.
- W1525050347 cites W2108604227 @default.
- W1525050347 cites W2121032760 @default.
- W1525050347 cites W2122315938 @default.
- W1525050347 cites W2124738823 @default.
- W1525050347 cites W2130976171 @default.
- W1525050347 cites W2136328522 @default.
- W1525050347 cites W2157539439 @default.
- W1525050347 cites W2178724328 @default.
- W1525050347 doi "https://doi.org/10.1029/2007wr005866" @default.
- W1525050347 hasPublicationYear "2008" @default.
- W1525050347 type Work @default.
- W1525050347 sameAs 1525050347 @default.
- W1525050347 citedByCount "12" @default.
- W1525050347 countsByYear W15250503472013 @default.
- W1525050347 countsByYear W15250503472014 @default.
- W1525050347 countsByYear W15250503472018 @default.
- W1525050347 countsByYear W15250503472020 @default.
- W1525050347 crossrefType "journal-article" @default.
- W1525050347 hasAuthorship W1525050347A5012590564 @default.
- W1525050347 hasConcept C11413529 @default.
- W1525050347 hasConcept C126255220 @default.
- W1525050347 hasConcept C127413603 @default.
- W1525050347 hasConcept C167928553 @default.
- W1525050347 hasConcept C201995342 @default.
- W1525050347 hasConcept C28826006 @default.
- W1525050347 hasConcept C33923547 @default.
- W1525050347 hasConcept C41008148 @default.
- W1525050347 hasConcept C96250715 @default.
- W1525050347 hasConceptScore W1525050347C11413529 @default.
- W1525050347 hasConceptScore W1525050347C126255220 @default.
- W1525050347 hasConceptScore W1525050347C127413603 @default.
- W1525050347 hasConceptScore W1525050347C167928553 @default.
- W1525050347 hasConceptScore W1525050347C201995342 @default.
- W1525050347 hasConceptScore W1525050347C28826006 @default.
- W1525050347 hasConceptScore W1525050347C33923547 @default.
- W1525050347 hasConceptScore W1525050347C41008148 @default.
- W1525050347 hasConceptScore W1525050347C96250715 @default.
- W1525050347 hasIssue "4" @default.
- W1525050347 hasLocation W15250503471 @default.
- W1525050347 hasOpenAccess W1525050347 @default.
- W1525050347 hasPrimaryLocation W15250503471 @default.
- W1525050347 hasRelatedWork W2351491280 @default.
- W1525050347 hasRelatedWork W2351859806 @default.
- W1525050347 hasRelatedWork W2370896618 @default.
- W1525050347 hasRelatedWork W2371447506 @default.
- W1525050347 hasRelatedWork W2386767533 @default.
- W1525050347 hasRelatedWork W2600648281 @default.
- W1525050347 hasRelatedWork W2979279324 @default.
- W1525050347 hasRelatedWork W303980170 @default.
- W1525050347 hasRelatedWork W3135116463 @default.
- W1525050347 hasRelatedWork W4239376463 @default.
- W1525050347 hasVolume "44" @default.
- W1525050347 isParatext "false" @default.
- W1525050347 isRetracted "false" @default.
- W1525050347 magId "1525050347" @default.
- W1525050347 workType "article" @default.