Matches in SemOpenAlex for { <https://semopenalex.org/work/W1525596181> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W1525596181 abstract "Hidden geothermal systems are those systems above which hydrothermal surface features (e.g., hot springs, fumaroles, elevated ground temperatures, hydrothermal alteration) are lacking. Emissions of moderate to low solubility gases (e.g., CO2, CH4, He) may be one of the primary near-surface signals from these systems. Detection of anomalous gas emissions related to hidden geothermal systems may therefore be an important tool to discover new geothermal resources. This study investigates the potential for CO2 detection and monitoring in the subsurface and above ground in the near-surface environment to serve as a tool to discover hidden geothermal systems. We focus the investigation on CO2 due to (1) its abundance in geothermal systems, (2) its moderate solubility in water, and (3) the wide range of technologies available to monitor CO2 in the near-surface environment. However, monitoring in the near-surface environment for CO2 derived from hidden geothermal reservoirs is complicated by the large variation in CO2 fluxes and concentrations arising from natural biological and hydrologic processes. In the near-surface environment, the flow and transport of CO2 at high concentrations will be controlled by its high density, low viscosity, and high solubility in water relative to air. Numerical simulations of CO2 migration show that CO2 concentrations can reach very high levels in the shallow subsurface even for relatively low geothermal source CO2 fluxes. However, once CO2 seeps out of the ground into the atmospheric surface layer, surface winds are effective at dispersing CO2 seepage. In natural ecological systems in the absence of geothermal gas emissions, near-surface CO2 fluxes and concentrations are primarily controlled by CO2 uptake by photosynthesis, production by root respiration, and microbial decomposition of soil/subsoil organic matter, groundwater degassing, and exchange with the atmosphere. Available technologies for monitoring CO2 in the near-surface environment include (1) the infrared gas analyzer (IRGA) for measurement of concentrations at point locations, (2) the accumulation chamber (AC) method for measuring soil CO2 fluxes at point locations, (3) the eddy covariance (EC) method for measuring net CO2 flux over a given area, (4) hyperspectral imaging of vegetative stress resulting from elevated CO2 concentrations, and (5) light detection and ranging (LIDAR) that can measure CO2 concentrations over an integrated path. Technologies currently in developmental stages that have the potential to be used for CO2 monitoring include tunable lasers for long distance integrated concentration measurements and micro-electronic mechanical systems (MEMS) that can make widespread point measurements. To address the challenge of detecting potentially small-magnitude geothermal CO2 emissions within the natural background variability of CO2, we propose an approach that integrates available detection and monitoring methodologies with statistical analysis and modeling strategies. Within the area targeted for geothermal exploration, point measurements of soil CO2 fluxes and concentrations using the AC method and a portable IRGA, respectively, and measurements of net surface flux using EC should be made. Also, the natural spatial and temporal variability of surface CO2 fluxes and subsurface CO2 concentrations should be quantified within a background area with similar geologic, climatic, and ecosystem characteristics to the area targeted for geothermal exploration. Statistical analyses of data collected from both areas should be used to guide sampling strategy, discern spatial patterns that may be indicative of geothermal CO2 emissions, and assess the presence (or absence) of geothermal CO2 within the natural background variability with a desired confidence level. Once measured CO2 concentrations and fluxes have been determined to be of anomalous geothermal origin with high confidence, more expensive vertical subsurface gas sampling and chemical and isotopic analyses can be undertaken. Integrated analysis of all measurements will determine definitively if CO2 derived from a deep geothermal source is present, and if so, the spatial extent of the anomaly. The appropriateness of further geophysical measurements, installation of deep wells, and geochemical analyses of deep fluids can then be decided based on the results of the near surface CO2 monitoring program." @default.
- W1525596181 created "2016-06-24" @default.
- W1525596181 creator A5020648028 @default.
- W1525596181 creator A5039523829 @default.
- W1525596181 date "2004-12-15" @default.
- W1525596181 modified "2023-09-27" @default.
- W1525596181 title "Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring" @default.
- W1525596181 cites W1516867372 @default.
- W1525596181 cites W1965981757 @default.
- W1525596181 cites W1968175912 @default.
- W1525596181 cites W1968794827 @default.
- W1525596181 cites W1970390440 @default.
- W1525596181 cites W1976313270 @default.
- W1525596181 cites W1988780488 @default.
- W1525596181 cites W1988979342 @default.
- W1525596181 cites W1995569622 @default.
- W1525596181 cites W1998061454 @default.
- W1525596181 cites W1998946568 @default.
- W1525596181 cites W2015238200 @default.
- W1525596181 cites W2022787997 @default.
- W1525596181 cites W2044249910 @default.
- W1525596181 cites W2050148940 @default.
- W1525596181 cites W2050728582 @default.
- W1525596181 cites W2051037347 @default.
- W1525596181 cites W2051505272 @default.
- W1525596181 cites W2055005765 @default.
- W1525596181 cites W2058518169 @default.
- W1525596181 cites W2061934685 @default.
- W1525596181 cites W2063987912 @default.
- W1525596181 cites W2069917830 @default.
- W1525596181 cites W2085311334 @default.
- W1525596181 cites W2085978957 @default.
- W1525596181 cites W2090565156 @default.
- W1525596181 cites W2091662174 @default.
- W1525596181 cites W2102033923 @default.
- W1525596181 cites W2104566493 @default.
- W1525596181 cites W2104618325 @default.
- W1525596181 cites W2114508162 @default.
- W1525596181 cites W2120218133 @default.
- W1525596181 cites W2127215489 @default.
- W1525596181 cites W2133805996 @default.
- W1525596181 cites W2146788012 @default.
- W1525596181 cites W2149541905 @default.
- W1525596181 cites W2156840454 @default.
- W1525596181 cites W2162604832 @default.
- W1525596181 cites W2171646358 @default.
- W1525596181 cites W2319465468 @default.
- W1525596181 cites W2338049369 @default.
- W1525596181 cites W3083113686 @default.
- W1525596181 cites W816576063 @default.
- W1525596181 doi "https://doi.org/10.2172/840238" @default.
- W1525596181 hasPublicationYear "2004" @default.
- W1525596181 type Work @default.
- W1525596181 sameAs 1525596181 @default.
- W1525596181 citedByCount "5" @default.
- W1525596181 countsByYear W15255961812015 @default.
- W1525596181 crossrefType "report" @default.
- W1525596181 hasAuthorship W1525596181A5020648028 @default.
- W1525596181 hasAuthorship W1525596181A5039523829 @default.
- W1525596181 hasBestOaLocation W15255961813 @default.
- W1525596181 hasConcept C111766609 @default.
- W1525596181 hasConcept C127313418 @default.
- W1525596181 hasConcept C39432304 @default.
- W1525596181 hasConcept C41008148 @default.
- W1525596181 hasConcept C8058405 @default.
- W1525596181 hasConceptScore W1525596181C111766609 @default.
- W1525596181 hasConceptScore W1525596181C127313418 @default.
- W1525596181 hasConceptScore W1525596181C39432304 @default.
- W1525596181 hasConceptScore W1525596181C41008148 @default.
- W1525596181 hasConceptScore W1525596181C8058405 @default.
- W1525596181 hasLocation W15255961811 @default.
- W1525596181 hasLocation W15255961812 @default.
- W1525596181 hasLocation W15255961813 @default.
- W1525596181 hasLocation W15255961814 @default.
- W1525596181 hasOpenAccess W1525596181 @default.
- W1525596181 hasPrimaryLocation W15255961811 @default.
- W1525596181 hasRelatedWork W1978364227 @default.
- W1525596181 hasRelatedWork W1978398175 @default.
- W1525596181 hasRelatedWork W1988089869 @default.
- W1525596181 hasRelatedWork W2052949574 @default.
- W1525596181 hasRelatedWork W2064209619 @default.
- W1525596181 hasRelatedWork W2095640533 @default.
- W1525596181 hasRelatedWork W2114879407 @default.
- W1525596181 hasRelatedWork W2133504202 @default.
- W1525596181 hasRelatedWork W2327345012 @default.
- W1525596181 hasRelatedWork W2899084033 @default.
- W1525596181 isParatext "false" @default.
- W1525596181 isRetracted "false" @default.
- W1525596181 magId "1525596181" @default.
- W1525596181 workType "report" @default.