Matches in SemOpenAlex for { <https://semopenalex.org/work/W1526543462> ?p ?o ?g. }
- W1526543462 endingPage "3223" @default.
- W1526543462 startingPage "3217" @default.
- W1526543462 abstract "Subset selection from massive data with noised information is increasingly popular for various applications. This problem is still highly challenging as current methods are generally slow in speed and sensitive to outliers. To address the above two issues, we propose an accelerated robust subset selection (ARSS) method. Specifically in the subset selection area, this is the first attempt to employ the lp (0 < p ≤ 1)-norm based measure for the representation loss, preventing large errors from dominating our objective. As a result, the robustness against outlier elements is greatly enhanced. Actually, data size is generally much larger than feature length, i.e. N ≫ L. Based on this observation, we propose a speedup solver (via ALM and equivalent derivations) to highly reduce the computational cost, theoretically from O (N4) to O (N2L). Extensive experiments on ten benchmark datasets verify that our method not only outperforms state of the art methods, but also runs 10,000+ times faster than the most related method." @default.
- W1526543462 created "2016-06-24" @default.
- W1526543462 creator A5018863416 @default.
- W1526543462 creator A5040673285 @default.
- W1526543462 creator A5052118475 @default.
- W1526543462 creator A5064925158 @default.
- W1526543462 creator A5072815126 @default.
- W1526543462 creator A5075610224 @default.
- W1526543462 date "2015-01-25" @default.
- W1526543462 modified "2023-10-12" @default.
- W1526543462 title "10,000+ times accelerated robust subset selection (ARSS)" @default.
- W1526543462 cites W1592217569 @default.
- W1526543462 cites W1787402657 @default.
- W1526543462 cites W1964488740 @default.
- W1526543462 cites W1966872876 @default.
- W1526543462 cites W2008205484 @default.
- W1526543462 cites W2014237985 @default.
- W1526543462 cites W2035773017 @default.
- W1526543462 cites W2074668987 @default.
- W1526543462 cites W2108687351 @default.
- W1526543462 cites W2111854674 @default.
- W1526543462 cites W2114188922 @default.
- W1526543462 cites W2131628350 @default.
- W1526543462 cites W2138002832 @default.
- W1526543462 cites W2147318913 @default.
- W1526543462 cites W2151537585 @default.
- W1526543462 cites W2153051254 @default.
- W1526543462 cites W2165232124 @default.
- W1526543462 cites W2183198701 @default.
- W1526543462 cites W3029645440 @default.
- W1526543462 cites W37083855 @default.
- W1526543462 cites W5896900 @default.
- W1526543462 cites W79405465 @default.
- W1526543462 hasPublicationYear "2015" @default.
- W1526543462 type Work @default.
- W1526543462 sameAs 1526543462 @default.
- W1526543462 citedByCount "12" @default.
- W1526543462 countsByYear W15265434622016 @default.
- W1526543462 countsByYear W15265434622017 @default.
- W1526543462 countsByYear W15265434622018 @default.
- W1526543462 countsByYear W15265434622019 @default.
- W1526543462 countsByYear W15265434622020 @default.
- W1526543462 countsByYear W15265434622021 @default.
- W1526543462 countsByYear W15265434622022 @default.
- W1526543462 crossrefType "proceedings-article" @default.
- W1526543462 hasAuthorship W1526543462A5018863416 @default.
- W1526543462 hasAuthorship W1526543462A5040673285 @default.
- W1526543462 hasAuthorship W1526543462A5052118475 @default.
- W1526543462 hasAuthorship W1526543462A5064925158 @default.
- W1526543462 hasAuthorship W1526543462A5072815126 @default.
- W1526543462 hasAuthorship W1526543462A5075610224 @default.
- W1526543462 hasConcept C104317684 @default.
- W1526543462 hasConcept C11413529 @default.
- W1526543462 hasConcept C124101348 @default.
- W1526543462 hasConcept C13280743 @default.
- W1526543462 hasConcept C148483581 @default.
- W1526543462 hasConcept C154945302 @default.
- W1526543462 hasConcept C173608175 @default.
- W1526543462 hasConcept C185592680 @default.
- W1526543462 hasConcept C185798385 @default.
- W1526543462 hasConcept C199360897 @default.
- W1526543462 hasConcept C205649164 @default.
- W1526543462 hasConcept C2778770139 @default.
- W1526543462 hasConcept C41008148 @default.
- W1526543462 hasConcept C55493867 @default.
- W1526543462 hasConcept C63479239 @default.
- W1526543462 hasConcept C68339613 @default.
- W1526543462 hasConcept C79337645 @default.
- W1526543462 hasConcept C81917197 @default.
- W1526543462 hasConceptScore W1526543462C104317684 @default.
- W1526543462 hasConceptScore W1526543462C11413529 @default.
- W1526543462 hasConceptScore W1526543462C124101348 @default.
- W1526543462 hasConceptScore W1526543462C13280743 @default.
- W1526543462 hasConceptScore W1526543462C148483581 @default.
- W1526543462 hasConceptScore W1526543462C154945302 @default.
- W1526543462 hasConceptScore W1526543462C173608175 @default.
- W1526543462 hasConceptScore W1526543462C185592680 @default.
- W1526543462 hasConceptScore W1526543462C185798385 @default.
- W1526543462 hasConceptScore W1526543462C199360897 @default.
- W1526543462 hasConceptScore W1526543462C205649164 @default.
- W1526543462 hasConceptScore W1526543462C2778770139 @default.
- W1526543462 hasConceptScore W1526543462C41008148 @default.
- W1526543462 hasConceptScore W1526543462C55493867 @default.
- W1526543462 hasConceptScore W1526543462C63479239 @default.
- W1526543462 hasConceptScore W1526543462C68339613 @default.
- W1526543462 hasConceptScore W1526543462C79337645 @default.
- W1526543462 hasConceptScore W1526543462C81917197 @default.
- W1526543462 hasOpenAccess W1526543462 @default.
- W1526543462 hasRelatedWork W185973768 @default.
- W1526543462 hasRelatedWork W1910960015 @default.
- W1526543462 hasRelatedWork W1981939910 @default.
- W1526543462 hasRelatedWork W2009134948 @default.
- W1526543462 hasRelatedWork W2109751703 @default.
- W1526543462 hasRelatedWork W2114188922 @default.
- W1526543462 hasRelatedWork W2221329968 @default.
- W1526543462 hasRelatedWork W2252068235 @default.
- W1526543462 hasRelatedWork W2340638288 @default.
- W1526543462 hasRelatedWork W2583085944 @default.