Matches in SemOpenAlex for { <https://semopenalex.org/work/W1526632783> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W1526632783 endingPage "323" @default.
- W1526632783 startingPage "305" @default.
- W1526632783 abstract "Very often it is difficult to develop mechanistic models for pavement geotechnical engineering problems due to its complex nature and uncertainty in material parameters. The difficulty in mechanistic analysis has forced the engineers to follows certain empirical correlations. The artificial neural network (ANN) is being as an alternate statistical method, mapping in higher-order spaces, such models can go beyond the existing univariate relationships. The applications of ANNs in pavement geotechnical engineering problems is mostly limited to constitutive modeling, with few applications on prediction of soil layer properties using Falling Weight Deflectometer (FWD), prediction of swelling potential and compute the remaining life of flexible pavements. However, ANN is considered as a ‘Black box’ system being unable to explain interrelation between inputs and output. The ANNs also have inherent drawbacks such as slow convergence speed, less generalizing performance, arriving at local minimum and over-fitting problems. Recently support vector machine (SVM) is being used due to its, better generalization as prediction error and model complexity are simultaneously minimized. SVM is based on statistical learning theory unlike ANNs (biological learning theory). The application of SVM in pavement geotechnical engineering is very much limited and to best of the knowledge such methods have not been applied to pavement geotechnical engineering. However, engineering application of numerical methods is a science as well as an art. This juxtaposition is based on the fact that even though the developed algorithms are based on scientific logic and belong to the special branch of applied mathematics, their successful application to new problems is problem oriented and is an art. As no method can be the panacea to solve all problems to the last details, their application to new areas needs critical evaluation. With above in view, an attempt has been made to develop the art of applying the above artificial intelligence techniques (ANN and SVM) to different pavement engineering problems such as prediction of compaction characteristics, permeability, swelling potential, coefficient of subgrade reaction etc. The parameters associated with the model developments are discussed in terms of guide line for its future" @default.
- W1526632783 created "2016-06-24" @default.
- W1526632783 creator A5004350213 @default.
- W1526632783 creator A5004482291 @default.
- W1526632783 creator A5049935591 @default.
- W1526632783 date "2009-01-01" @default.
- W1526632783 modified "2023-09-23" @default.
- W1526632783 title "Application of Soft Computing Techniques to Expansive Soil Characterization" @default.
- W1526632783 cites W1490180010 @default.
- W1526632783 cites W1850059573 @default.
- W1526632783 cites W1964357740 @default.
- W1526632783 cites W1967508864 @default.
- W1526632783 cites W1983023737 @default.
- W1526632783 cites W1999239561 @default.
- W1526632783 cites W2005966071 @default.
- W1526632783 cites W2029372760 @default.
- W1526632783 cites W2054261039 @default.
- W1526632783 cites W2058224488 @default.
- W1526632783 cites W2063225023 @default.
- W1526632783 cites W2068046269 @default.
- W1526632783 cites W2068997343 @default.
- W1526632783 cites W2070528208 @default.
- W1526632783 cites W2078719977 @default.
- W1526632783 cites W2081000446 @default.
- W1526632783 cites W2083711477 @default.
- W1526632783 cites W2087347434 @default.
- W1526632783 cites W2103728465 @default.
- W1526632783 cites W2106191716 @default.
- W1526632783 cites W2156909104 @default.
- W1526632783 cites W4254169403 @default.
- W1526632783 cites W4231823833 @default.
- W1526632783 doi "https://doi.org/10.1007/978-3-642-04586-8_11" @default.
- W1526632783 hasPublicationYear "2009" @default.
- W1526632783 type Work @default.
- W1526632783 sameAs 1526632783 @default.
- W1526632783 citedByCount "6" @default.
- W1526632783 countsByYear W15266327832012 @default.
- W1526632783 countsByYear W15266327832019 @default.
- W1526632783 countsByYear W15266327832020 @default.
- W1526632783 crossrefType "book-chapter" @default.
- W1526632783 hasAuthorship W1526632783A5004350213 @default.
- W1526632783 hasAuthorship W1526632783A5004482291 @default.
- W1526632783 hasAuthorship W1526632783A5049935591 @default.
- W1526632783 hasConcept C1121360 @default.
- W1526632783 hasConcept C127313418 @default.
- W1526632783 hasConcept C140073362 @default.
- W1526632783 hasConcept C154945302 @default.
- W1526632783 hasConcept C159390177 @default.
- W1526632783 hasConcept C159750122 @default.
- W1526632783 hasConcept C159985019 @default.
- W1526632783 hasConcept C171250308 @default.
- W1526632783 hasConcept C192562407 @default.
- W1526632783 hasConcept C2780502288 @default.
- W1526632783 hasConcept C2780841128 @default.
- W1526632783 hasConcept C30407753 @default.
- W1526632783 hasConcept C41008148 @default.
- W1526632783 hasConcept C50644808 @default.
- W1526632783 hasConceptScore W1526632783C1121360 @default.
- W1526632783 hasConceptScore W1526632783C127313418 @default.
- W1526632783 hasConceptScore W1526632783C140073362 @default.
- W1526632783 hasConceptScore W1526632783C154945302 @default.
- W1526632783 hasConceptScore W1526632783C159390177 @default.
- W1526632783 hasConceptScore W1526632783C159750122 @default.
- W1526632783 hasConceptScore W1526632783C159985019 @default.
- W1526632783 hasConceptScore W1526632783C171250308 @default.
- W1526632783 hasConceptScore W1526632783C192562407 @default.
- W1526632783 hasConceptScore W1526632783C2780502288 @default.
- W1526632783 hasConceptScore W1526632783C2780841128 @default.
- W1526632783 hasConceptScore W1526632783C30407753 @default.
- W1526632783 hasConceptScore W1526632783C41008148 @default.
- W1526632783 hasConceptScore W1526632783C50644808 @default.
- W1526632783 hasLocation W15266327831 @default.
- W1526632783 hasOpenAccess W1526632783 @default.
- W1526632783 hasPrimaryLocation W15266327831 @default.
- W1526632783 hasRelatedWork W1526632783 @default.
- W1526632783 hasRelatedWork W2035401485 @default.
- W1526632783 hasRelatedWork W2068387264 @default.
- W1526632783 hasRelatedWork W2357338742 @default.
- W1526632783 hasRelatedWork W2361161681 @default.
- W1526632783 hasRelatedWork W2363933471 @default.
- W1526632783 hasRelatedWork W2373843736 @default.
- W1526632783 hasRelatedWork W2380191420 @default.
- W1526632783 hasRelatedWork W2380321010 @default.
- W1526632783 hasRelatedWork W2383686283 @default.
- W1526632783 isParatext "false" @default.
- W1526632783 isRetracted "false" @default.
- W1526632783 magId "1526632783" @default.
- W1526632783 workType "book-chapter" @default.