Matches in SemOpenAlex for { <https://semopenalex.org/work/W1526891024> ?p ?o ?g. }
- W1526891024 endingPage "229" @default.
- W1526891024 startingPage "203" @default.
- W1526891024 abstract "In this paper, we propose and analyze several methods to estimate a rigid transformation from a set of 3-D matched points or matched frames, which are important features in geometric algorithms. We also develop tools to predict and verify the accuracy of these estimations. The theoretical contributions are: an intrinsic model of noise for transformations based on composition rather than addition; a unified formalism for the estimation of both the rigid transformation and its covariance matrix for points or frames correspondences, and a statistical validation method to verify the error estimation, which applies even when no “ground truth” is available. We analyze and demonstrate on synthetic data that our scheme is well behaved. The practical contribution of the paper is the validation of our transformation estimation method in the case of 3-D medical images, which shows that an accuracy of the registration far below the size of a voxel can be achieved, and in the case of protein substructure matching, where frame features drastically improve both selectivity and complexity." @default.
- W1526891024 created "2016-06-24" @default.
- W1526891024 creator A5003253553 @default.
- W1526891024 creator A5045849009 @default.
- W1526891024 date "1997-01-01" @default.
- W1526891024 modified "2023-09-27" @default.
- W1526891024 cites W1488329660 @default.
- W1526891024 cites W1503134807 @default.
- W1526891024 cites W1547669723 @default.
- W1526891024 cites W1555187143 @default.
- W1526891024 cites W1558477213 @default.
- W1526891024 cites W1570212358 @default.
- W1526891024 cites W1583065847 @default.
- W1526891024 cites W1590739438 @default.
- W1526891024 cites W1606157100 @default.
- W1526891024 cites W1966041739 @default.
- W1526891024 cites W1971675665 @default.
- W1526891024 cites W1972131978 @default.
- W1526891024 cites W1988874269 @default.
- W1526891024 cites W1990012555 @default.
- W1526891024 cites W1993267444 @default.
- W1526891024 cites W2000048778 @default.
- W1526891024 cites W2009086487 @default.
- W1526891024 cites W2012585457 @default.
- W1526891024 cites W2035781918 @default.
- W1526891024 cites W2049981393 @default.
- W1526891024 cites W2056238234 @default.
- W1526891024 cites W2063698478 @default.
- W1526891024 cites W2103497972 @default.
- W1526891024 cites W2103671982 @default.
- W1526891024 cites W2113518661 @default.
- W1526891024 cites W2118104180 @default.
- W1526891024 cites W2119052282 @default.
- W1526891024 cites W2119568445 @default.
- W1526891024 cites W2122512809 @default.
- W1526891024 cites W2128019145 @default.
- W1526891024 cites W2131814685 @default.
- W1526891024 cites W2134783171 @default.
- W1526891024 cites W2145473458 @default.
- W1526891024 cites W2149322529 @default.
- W1526891024 cites W2154204736 @default.
- W1526891024 cites W2154422144 @default.
- W1526891024 cites W2161366583 @default.
- W1526891024 cites W2162406179 @default.
- W1526891024 cites W2319885746 @default.
- W1526891024 cites W2324309783 @default.
- W1526891024 cites W2977498972 @default.
- W1526891024 cites W3039274615 @default.
- W1526891024 cites W3088681198 @default.
- W1526891024 doi "https://doi.org/10.1023/a:1007976002485" @default.
- W1526891024 hasPublicationYear "1997" @default.
- W1526891024 type Work @default.
- W1526891024 sameAs 1526891024 @default.
- W1526891024 citedByCount "151" @default.
- W1526891024 countsByYear W15268910242012 @default.
- W1526891024 countsByYear W15268910242013 @default.
- W1526891024 countsByYear W15268910242014 @default.
- W1526891024 countsByYear W15268910242015 @default.
- W1526891024 countsByYear W15268910242016 @default.
- W1526891024 countsByYear W15268910242017 @default.
- W1526891024 countsByYear W15268910242018 @default.
- W1526891024 countsByYear W15268910242019 @default.
- W1526891024 countsByYear W15268910242020 @default.
- W1526891024 countsByYear W15268910242021 @default.
- W1526891024 countsByYear W15268910242022 @default.
- W1526891024 crossrefType "journal-article" @default.
- W1526891024 hasAuthorship W1526891024A5003253553 @default.
- W1526891024 hasAuthorship W1526891024A5045849009 @default.
- W1526891024 hasBestOaLocation W15268910242 @default.
- W1526891024 hasConcept C104317684 @default.
- W1526891024 hasConcept C105795698 @default.
- W1526891024 hasConcept C11413529 @default.
- W1526891024 hasConcept C126795593 @default.
- W1526891024 hasConcept C153180895 @default.
- W1526891024 hasConcept C154945302 @default.
- W1526891024 hasConcept C165064840 @default.
- W1526891024 hasConcept C178650346 @default.
- W1526891024 hasConcept C185142706 @default.
- W1526891024 hasConcept C185592680 @default.
- W1526891024 hasConcept C204241405 @default.
- W1526891024 hasConcept C33923547 @default.
- W1526891024 hasConcept C41008148 @default.
- W1526891024 hasConcept C55493867 @default.
- W1526891024 hasConceptScore W1526891024C104317684 @default.
- W1526891024 hasConceptScore W1526891024C105795698 @default.
- W1526891024 hasConceptScore W1526891024C11413529 @default.
- W1526891024 hasConceptScore W1526891024C126795593 @default.
- W1526891024 hasConceptScore W1526891024C153180895 @default.
- W1526891024 hasConceptScore W1526891024C154945302 @default.
- W1526891024 hasConceptScore W1526891024C165064840 @default.
- W1526891024 hasConceptScore W1526891024C178650346 @default.
- W1526891024 hasConceptScore W1526891024C185142706 @default.
- W1526891024 hasConceptScore W1526891024C185592680 @default.
- W1526891024 hasConceptScore W1526891024C204241405 @default.
- W1526891024 hasConceptScore W1526891024C33923547 @default.
- W1526891024 hasConceptScore W1526891024C41008148 @default.
- W1526891024 hasConceptScore W1526891024C55493867 @default.
- W1526891024 hasIssue "3" @default.