Matches in SemOpenAlex for { <https://semopenalex.org/work/W1527054173> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W1527054173 abstract "One of the limitations of linear adaptive echo cancellers is nonlinearities which are generated mainly in the loudspeaker. The complete acoustic channel can be modelled as a nonlinear system convolved with a linear dispersive echo channel. Two new acoustic echo canceller models are developed to improve nonlinear performance. The first model consists of a time-delay feedforward neural network (TDNN) and the second model consists of a memoryless neural network followed by an adaptive normalized least mean square (NLMS) structure. Simulations demonstrate that both neural network based structures improve the echo return loss enhancement (ERLE) performance compared to a linear NLMS acoustic echo canceller. Experimental results using the TDNN improved the ERLE by 10 dB at low to medium loudspeaker volumes." @default.
- W1527054173 created "2016-06-24" @default.
- W1527054173 creator A5017668310 @default.
- W1527054173 creator A5054573607 @default.
- W1527054173 date "2002-11-19" @default.
- W1527054173 modified "2023-09-26" @default.
- W1527054173 title "Acoustic echo cancellation using NLMS-neural network structures" @default.
- W1527054173 cites W1995730003 @default.
- W1527054173 cites W2011153540 @default.
- W1527054173 cites W2028745055 @default.
- W1527054173 cites W2097454939 @default.
- W1527054173 cites W2100256715 @default.
- W1527054173 cites W2130205909 @default.
- W1527054173 doi "https://doi.org/10.1109/icassp.1995.479485" @default.
- W1527054173 hasPublicationYear "2002" @default.
- W1527054173 type Work @default.
- W1527054173 sameAs 1527054173 @default.
- W1527054173 citedByCount "37" @default.
- W1527054173 countsByYear W15270541732012 @default.
- W1527054173 countsByYear W15270541732013 @default.
- W1527054173 countsByYear W15270541732014 @default.
- W1527054173 countsByYear W15270541732015 @default.
- W1527054173 countsByYear W15270541732016 @default.
- W1527054173 countsByYear W15270541732019 @default.
- W1527054173 countsByYear W15270541732021 @default.
- W1527054173 countsByYear W15270541732023 @default.
- W1527054173 crossrefType "proceedings-article" @default.
- W1527054173 hasAuthorship W1527054173A5017668310 @default.
- W1527054173 hasAuthorship W1527054173A5054573607 @default.
- W1527054173 hasConcept C102248274 @default.
- W1527054173 hasConcept C11413529 @default.
- W1527054173 hasConcept C154945302 @default.
- W1527054173 hasConcept C2779426996 @default.
- W1527054173 hasConcept C28490314 @default.
- W1527054173 hasConcept C31258907 @default.
- W1527054173 hasConcept C41008148 @default.
- W1527054173 hasConcept C50644808 @default.
- W1527054173 hasConceptScore W1527054173C102248274 @default.
- W1527054173 hasConceptScore W1527054173C11413529 @default.
- W1527054173 hasConceptScore W1527054173C154945302 @default.
- W1527054173 hasConceptScore W1527054173C2779426996 @default.
- W1527054173 hasConceptScore W1527054173C28490314 @default.
- W1527054173 hasConceptScore W1527054173C31258907 @default.
- W1527054173 hasConceptScore W1527054173C41008148 @default.
- W1527054173 hasConceptScore W1527054173C50644808 @default.
- W1527054173 hasLocation W15270541731 @default.
- W1527054173 hasOpenAccess W1527054173 @default.
- W1527054173 hasPrimaryLocation W15270541731 @default.
- W1527054173 hasRelatedWork W2057950652 @default.
- W1527054173 hasRelatedWork W2162631815 @default.
- W1527054173 hasRelatedWork W2368779261 @default.
- W1527054173 hasRelatedWork W2386387936 @default.
- W1527054173 hasRelatedWork W2778699561 @default.
- W1527054173 hasRelatedWork W2794438528 @default.
- W1527054173 hasRelatedWork W2893763841 @default.
- W1527054173 hasRelatedWork W2954392969 @default.
- W1527054173 hasRelatedWork W3045446346 @default.
- W1527054173 hasRelatedWork W3124166275 @default.
- W1527054173 isParatext "false" @default.
- W1527054173 isRetracted "false" @default.
- W1527054173 magId "1527054173" @default.
- W1527054173 workType "article" @default.