Matches in SemOpenAlex for { <https://semopenalex.org/work/W1528148909> ?p ?o ?g. }
- W1528148909 abstract "One-dimensional (1D) nanostructures such as nanotubes, nanowires, and nanobelts have been the focus of much recent attention, owing to the novel electronic and optical properties intrinsically associated with their low dimensionality and the quantum confinement effect. Such 1D nanostructures have potential applications in nanoelectronics, advanced composites, field emission devices, sensors, probes, optics and optoelectronics (Baughman et al., 2002; Agarwal & Lieber, 2006). Silicon nanowires have been preferentially studied since Si is of great technological importance in microelectronics (Morales & Lieber, 1998). Silicon nanowires exhibit significant differences in physical (Cui & Lieber 2001; Ma, et al., 2003; Sun et al., 2001) and chemical properties (Sun et al., 2003; Chen et al., 2005) from bulk Si, which have been exploited to fabricate nanoelectronic devices such as logic circuits (Huang et al., 2001), field effect transistors (Lieber, 2003), and sensors (Cui et al., 2001). Compared to Si, Ge nanostructures are of particular interest, since the exciton Bohr radius of bulk Ge (24.3 nm) (Maeda et al., 1991) is larger than that of Si (4.9 nm) (Cullis et al., 1997), resulting in more prominent quantum confinement effects. Ge also offers the advantage of lower processing temperatures with easier integration into conventional devices. Furthermore, Ge has much higher electron and hole mobility than Si (Sze, 1981), which is especially required when electronic devices are scaled down to the sub-100 nm regime. Several growth methods have been developed for the synthesis of Ge nanowires, including laser ablation (Morales & Lieber, 1998; Zhang et al., 2000), thermal evaporation (Gu et al., 2001; Nguyen et al., 2005; Sun et al., 2006; Das et al., 2007; Sutter et al., 2008), supercriticalfluid synthesis (Ryan et al., 2003; Polyakov et al., 2006; Ziegler et al., 2004; Erts et al., 2006), liquid-state synthesis (Heath & LeGoues, 1993; Song et al., 2009), molecular beam epitaxy (Omi & Ogino, 1997), and chemical vapor deposition (CVD) (Kodambaka et al., 2007; Ryan et al., 2003). CVD has been the most widely employed of these synthesis methods, with the aim of synthesizing Ge nanowires in a controllable way via the selection of suitable Ge" @default.
- W1528148909 created "2016-06-24" @default.
- W1528148909 creator A5013279483 @default.
- W1528148909 creator A5013418213 @default.
- W1528148909 creator A5016419992 @default.
- W1528148909 creator A5070438427 @default.
- W1528148909 creator A5077825321 @default.
- W1528148909 date "2010-02-01" @default.
- W1528148909 modified "2023-09-26" @default.
- W1528148909 title "Synthesis of Germanium/Multi-Walled Carbon Nanotube Core-Sheath Structures via Chemical Vapor Deposition" @default.
- W1528148909 cites W113097130 @default.
- W1528148909 cites W1558606871 @default.
- W1528148909 cites W1963520162 @default.
- W1528148909 cites W1963763248 @default.
- W1528148909 cites W1965377194 @default.
- W1528148909 cites W1965501976 @default.
- W1528148909 cites W1966625307 @default.
- W1528148909 cites W1967719906 @default.
- W1528148909 cites W1968760988 @default.
- W1528148909 cites W1979580013 @default.
- W1528148909 cites W1980808478 @default.
- W1528148909 cites W1981860676 @default.
- W1528148909 cites W1984916838 @default.
- W1528148909 cites W1985555064 @default.
- W1528148909 cites W1985690146 @default.
- W1528148909 cites W1987416224 @default.
- W1528148909 cites W1987866901 @default.
- W1528148909 cites W1989538163 @default.
- W1528148909 cites W1990585004 @default.
- W1528148909 cites W1991197510 @default.
- W1528148909 cites W1997847065 @default.
- W1528148909 cites W2000863552 @default.
- W1528148909 cites W2009719480 @default.
- W1528148909 cites W2010346942 @default.
- W1528148909 cites W2013212562 @default.
- W1528148909 cites W2014945612 @default.
- W1528148909 cites W2021356191 @default.
- W1528148909 cites W2023356290 @default.
- W1528148909 cites W2026778302 @default.
- W1528148909 cites W2027238184 @default.
- W1528148909 cites W2038886138 @default.
- W1528148909 cites W2040651276 @default.
- W1528148909 cites W2042484878 @default.
- W1528148909 cites W2042716859 @default.
- W1528148909 cites W2043818794 @default.
- W1528148909 cites W2044854732 @default.
- W1528148909 cites W2046706580 @default.
- W1528148909 cites W2057413877 @default.
- W1528148909 cites W2058426797 @default.
- W1528148909 cites W2058939324 @default.
- W1528148909 cites W2060272324 @default.
- W1528148909 cites W2068350983 @default.
- W1528148909 cites W2076100698 @default.
- W1528148909 cites W2081608928 @default.
- W1528148909 cites W2081622804 @default.
- W1528148909 cites W2083021207 @default.
- W1528148909 cites W2085322528 @default.
- W1528148909 cites W2086120973 @default.
- W1528148909 cites W2088915729 @default.
- W1528148909 cites W2091166549 @default.
- W1528148909 cites W2091377246 @default.
- W1528148909 cites W2094963548 @default.
- W1528148909 cites W2106871853 @default.
- W1528148909 cites W2107507758 @default.
- W1528148909 cites W2124127251 @default.
- W1528148909 cites W2131102840 @default.
- W1528148909 cites W2140167371 @default.
- W1528148909 cites W2140214758 @default.
- W1528148909 cites W2153155141 @default.
- W1528148909 cites W2153530021 @default.
- W1528148909 cites W2163673716 @default.
- W1528148909 cites W2167222993 @default.
- W1528148909 cites W2334743070 @default.
- W1528148909 cites W2951844306 @default.
- W1528148909 cites W3147289055 @default.
- W1528148909 doi "https://doi.org/10.5772/39495" @default.
- W1528148909 hasPublicationYear "2010" @default.
- W1528148909 type Work @default.
- W1528148909 sameAs 1528148909 @default.
- W1528148909 citedByCount "0" @default.
- W1528148909 crossrefType "book-chapter" @default.
- W1528148909 hasAuthorship W1528148909A5013279483 @default.
- W1528148909 hasAuthorship W1528148909A5013418213 @default.
- W1528148909 hasAuthorship W1528148909A5016419992 @default.
- W1528148909 hasAuthorship W1528148909A5070438427 @default.
- W1528148909 hasAuthorship W1528148909A5077825321 @default.
- W1528148909 hasBestOaLocation W15281489091 @default.
- W1528148909 hasConcept C127313418 @default.
- W1528148909 hasConcept C127413603 @default.
- W1528148909 hasConcept C151730666 @default.
- W1528148909 hasConcept C154267886 @default.
- W1528148909 hasConcept C159985019 @default.
- W1528148909 hasConcept C171250308 @default.
- W1528148909 hasConcept C192562407 @default.
- W1528148909 hasConcept C2164484 @default.
- W1528148909 hasConcept C2777619693 @default.
- W1528148909 hasConcept C2816523 @default.
- W1528148909 hasConcept C42360764 @default.
- W1528148909 hasConcept C49040817 @default.
- W1528148909 hasConcept C513720949 @default.