Matches in SemOpenAlex for { <https://semopenalex.org/work/W1529168148> ?p ?o ?g. }
- W1529168148 abstract "In this paper, we systematically study gauge anomalies in bosonic and fermionic weak-coupling gauge theories with gauge group G (which can be continuous or discrete). We show a very close relation between gauge anomalies and symmetry-protected trivial (SPT) orders [also known as symmetry-protected topological (SPT) orders] in one-higher dimensions. Using such an idea, we argue that, in d space-time dimensions, the gauge anomalies are described by the elements in Free[H^{d+1}(G,R/Z)]oplus H_pi^{d+1}(BG,R/Z). The well known Adler-Bell-Jackiw anomalies are classified by the free part of the group cohomology class H^{d+1}(G,R/Z) of the gauge group G (denoted as Free[H^{d+1}(G,R/Z)]). We refer other kinds of gauge anomalies beyond Adler-Bell-Jackiw anomalies as nonABJ gauge anomalies, which include Witten SU(2) global gauge anomaly. We introduce a notion of pi-cohomology group, H_pi^{d+1}(BG,R/Z), for the classifying space BG, which is an Abelian group and include Tor[H^{d+1}(G,R/Z)] and topological cohomology group H^{d+1}(BG,R/Z) as subgroups. We argue that H_pi^{d+1}(BG,R/Z) classifies the bosonic nonABJ gauge anomalies, and partially classifies fermionic nonABJ anomalies. Using the same approach that shows gauge anomalies to be connected to SPT phases, we can also show that gravitational anomalies are connected to topological orders (ie patterns of long-range entanglement) in one-higher dimension." @default.
- W1529168148 created "2016-06-24" @default.
- W1529168148 creator A5072166156 @default.
- W1529168148 date "2013-08-09" @default.
- W1529168148 modified "2023-10-05" @default.
- W1529168148 title "Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders" @default.
- W1529168148 cites W1486204113 @default.
- W1529168148 cites W1493943450 @default.
- W1529168148 cites W1514707913 @default.
- W1529168148 cites W1520371613 @default.
- W1529168148 cites W1524641833 @default.
- W1529168148 cites W1552856240 @default.
- W1529168148 cites W1586626325 @default.
- W1529168148 cites W1601700513 @default.
- W1529168148 cites W1674267601 @default.
- W1529168148 cites W1748447111 @default.
- W1529168148 cites W1942206397 @default.
- W1529168148 cites W1967475705 @default.
- W1529168148 cites W1970663662 @default.
- W1529168148 cites W1974065616 @default.
- W1529168148 cites W1975493223 @default.
- W1529168148 cites W1976341577 @default.
- W1529168148 cites W1980197878 @default.
- W1529168148 cites W1982287320 @default.
- W1529168148 cites W1982515907 @default.
- W1529168148 cites W1983970619 @default.
- W1529168148 cites W1984334615 @default.
- W1529168148 cites W1989947590 @default.
- W1529168148 cites W1991694411 @default.
- W1529168148 cites W1993289500 @default.
- W1529168148 cites W1995034796 @default.
- W1529168148 cites W1995634318 @default.
- W1529168148 cites W2003095492 @default.
- W1529168148 cites W2003397144 @default.
- W1529168148 cites W2006294391 @default.
- W1529168148 cites W2008188057 @default.
- W1529168148 cites W2008822316 @default.
- W1529168148 cites W2019139361 @default.
- W1529168148 cites W2027856988 @default.
- W1529168148 cites W2029133448 @default.
- W1529168148 cites W2030164271 @default.
- W1529168148 cites W2034225373 @default.
- W1529168148 cites W2036755434 @default.
- W1529168148 cites W2040856652 @default.
- W1529168148 cites W2055519393 @default.
- W1529168148 cites W2059538679 @default.
- W1529168148 cites W2060078445 @default.
- W1529168148 cites W2061000251 @default.
- W1529168148 cites W2063196329 @default.
- W1529168148 cites W2064447244 @default.
- W1529168148 cites W2065324332 @default.
- W1529168148 cites W2070151728 @default.
- W1529168148 cites W2077953902 @default.
- W1529168148 cites W2083123179 @default.
- W1529168148 cites W2086780174 @default.
- W1529168148 cites W2086999135 @default.
- W1529168148 cites W2088198211 @default.
- W1529168148 cites W2089078995 @default.
- W1529168148 cites W2091164553 @default.
- W1529168148 cites W2093737252 @default.
- W1529168148 cites W2094482787 @default.
- W1529168148 cites W2097099514 @default.
- W1529168148 cites W2097210150 @default.
- W1529168148 cites W2097938713 @default.
- W1529168148 cites W2098821324 @default.
- W1529168148 cites W2104740527 @default.
- W1529168148 cites W2105077826 @default.
- W1529168148 cites W2105583567 @default.
- W1529168148 cites W2123798361 @default.
- W1529168148 cites W2125986857 @default.
- W1529168148 cites W2136592254 @default.
- W1529168148 cites W2141192973 @default.
- W1529168148 cites W2154221868 @default.
- W1529168148 cites W2159478153 @default.
- W1529168148 cites W2163085561 @default.
- W1529168148 cites W2164872434 @default.
- W1529168148 cites W2168101857 @default.
- W1529168148 cites W2216314481 @default.
- W1529168148 cites W2223420584 @default.
- W1529168148 cites W2226963368 @default.
- W1529168148 cites W2232211897 @default.
- W1529168148 cites W2232454336 @default.
- W1529168148 cites W2810737862 @default.
- W1529168148 cites W3022271612 @default.
- W1529168148 cites W3037108023 @default.
- W1529168148 cites W3047351161 @default.
- W1529168148 cites W3098253199 @default.
- W1529168148 cites W3099359296 @default.
- W1529168148 cites W3100397129 @default.
- W1529168148 cites W3101381885 @default.
- W1529168148 cites W3101464278 @default.
- W1529168148 cites W3105086094 @default.
- W1529168148 cites W3121974050 @default.
- W1529168148 cites W3148267619 @default.
- W1529168148 cites W3152260666 @default.
- W1529168148 cites W4361754124 @default.
- W1529168148 doi "https://doi.org/10.1103/physrevd.88.045013" @default.
- W1529168148 hasPublicationYear "2013" @default.
- W1529168148 type Work @default.
- W1529168148 sameAs 1529168148 @default.