Matches in SemOpenAlex for { <https://semopenalex.org/work/W1529564978> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W1529564978 endingPage "113" @default.
- W1529564978 startingPage "105" @default.
- W1529564978 abstract "Mathematical treatments and modelling of large data structures have always created problems. From the infancy of computers to the late 1980s, the limiting factor when modelling large data structures was often the size of the computer memory. Due to the strong evolution in the Held of computer technology, this problem is steadily decreasing. Consequently, when hardware restrictions are becoming less significant, one allows for the development of new, interesting but also calculation-intensive techniques. Typical examples within the area of drug design are techniques like 3D QSAR and molecular library characterization and modelling. However, improved hardware puts the focus on other limiting factors such as speed and efficiency of the mathematical operations performed when processing data. Algorithms and programs must be refined and optimized to meet the demands of today. The desired ‘interactiveness’ in data processing and molecular modelling serves as a good example of the needs of a modern drug design chemist. A group of data-analytical tools which steadily increase their applicability are the latent variable based ones, such as Principal Components analysis (PCA) [1,2]; Principal Components Regression (PCR) [3]; and Partial Least-squares Regression (PLS) [4-18]. Especially in the disciplines of natural science, their impact has been large during the past few decades, even if statistical methods based on diagonalization of covariance matrices have been used earlier. The usefulness and advantages of projection methods have been discussed by several authors, and for their introduction and applicability we refer to the vast literature [1-22]. However, these methods are frequently studied and their algorithms have been subjects for refinement and optimization. In this chapter, we will focus on the further developments of the PLS algorithm, using the classical algorithm as a reference for comparison. During the past years, several authors have published modified PLS algorithms with the main aim of increasing the computational speed. Often the code is optimized for a certain type of computational job or a special shape of data matrix. One common step which ties all new developments together is the calculation of some useful variance/covariance and association matrices. Our aim is to point out some commonalities and differences between the individual PLS algorithms in a simple and transparent way. No deep-penetrating computational evaluation was carried out. Instead, the paper will provide a detailed reference list of original articles." @default.
- W1529564978 created "2016-06-24" @default.
- W1529564978 creator A5001655358 @default.
- W1529564978 creator A5061470820 @default.
- W1529564978 date "2005-12-16" @default.
- W1529564978 modified "2023-09-27" @default.
- W1529564978 title "Alternative Partial Least-Squares (PLS) Algorithms" @default.
- W1529564978 cites W1966089218 @default.
- W1529564978 cites W1968661694 @default.
- W1529564978 cites W1976251851 @default.
- W1529564978 cites W1978491237 @default.
- W1529564978 cites W1978648390 @default.
- W1529564978 cites W1979612645 @default.
- W1529564978 cites W1980017694 @default.
- W1529564978 cites W1980497258 @default.
- W1529564978 cites W1995773010 @default.
- W1529564978 cites W2003254548 @default.
- W1529564978 cites W2009933590 @default.
- W1529564978 cites W2015596806 @default.
- W1529564978 cites W2027225917 @default.
- W1529564978 cites W2058382695 @default.
- W1529564978 cites W2060421488 @default.
- W1529564978 cites W2064681033 @default.
- W1529564978 cites W2066090712 @default.
- W1529564978 cites W20683381 @default.
- W1529564978 cites W2082984896 @default.
- W1529564978 cites W2086493794 @default.
- W1529564978 cites W2087883561 @default.
- W1529564978 cites W2088791192 @default.
- W1529564978 cites W2093109772 @default.
- W1529564978 cites W2118868944 @default.
- W1529564978 cites W2152176378 @default.
- W1529564978 cites W2158863190 @default.
- W1529564978 cites W2160333357 @default.
- W1529564978 cites W2166446427 @default.
- W1529564978 cites W2221625877 @default.
- W1529564978 cites W2333366652 @default.
- W1529564978 cites W2503993098 @default.
- W1529564978 cites W3644042 @default.
- W1529564978 cites W4232421753 @default.
- W1529564978 cites W4236835118 @default.
- W1529564978 cites W4292023222 @default.
- W1529564978 doi "https://doi.org/10.1007/0-306-46858-1_7" @default.
- W1529564978 hasPublicationYear "2005" @default.
- W1529564978 type Work @default.
- W1529564978 sameAs 1529564978 @default.
- W1529564978 citedByCount "10" @default.
- W1529564978 countsByYear W15295649782012 @default.
- W1529564978 countsByYear W15295649782013 @default.
- W1529564978 countsByYear W15295649782014 @default.
- W1529564978 countsByYear W15295649782016 @default.
- W1529564978 countsByYear W15295649782019 @default.
- W1529564978 countsByYear W15295649782021 @default.
- W1529564978 crossrefType "book-chapter" @default.
- W1529564978 hasAuthorship W1529564978A5001655358 @default.
- W1529564978 hasAuthorship W1529564978A5061470820 @default.
- W1529564978 hasConcept C105795698 @default.
- W1529564978 hasConcept C11413529 @default.
- W1529564978 hasConcept C22354355 @default.
- W1529564978 hasConcept C33923547 @default.
- W1529564978 hasConcept C41008148 @default.
- W1529564978 hasConceptScore W1529564978C105795698 @default.
- W1529564978 hasConceptScore W1529564978C11413529 @default.
- W1529564978 hasConceptScore W1529564978C22354355 @default.
- W1529564978 hasConceptScore W1529564978C33923547 @default.
- W1529564978 hasConceptScore W1529564978C41008148 @default.
- W1529564978 hasLocation W15295649781 @default.
- W1529564978 hasOpenAccess W1529564978 @default.
- W1529564978 hasPrimaryLocation W15295649781 @default.
- W1529564978 hasRelatedWork W1980905932 @default.
- W1529564978 hasRelatedWork W2040248213 @default.
- W1529564978 hasRelatedWork W2051221975 @default.
- W1529564978 hasRelatedWork W2066157660 @default.
- W1529564978 hasRelatedWork W2119158312 @default.
- W1529564978 hasRelatedWork W2330407128 @default.
- W1529564978 hasRelatedWork W2952216749 @default.
- W1529564978 hasRelatedWork W2969635709 @default.
- W1529564978 hasRelatedWork W3037784022 @default.
- W1529564978 hasRelatedWork W4234996786 @default.
- W1529564978 isParatext "false" @default.
- W1529564978 isRetracted "false" @default.
- W1529564978 magId "1529564978" @default.
- W1529564978 workType "book-chapter" @default.