Matches in SemOpenAlex for { <https://semopenalex.org/work/W1530607325> ?p ?o ?g. }
- W1530607325 abstract "This report examines the complex interactions between atmospheric stability and turbine-induced wakes on downwind turbine wind speed and power production at a West Coast North American multi-MW wind farm. Wakes are generated when the upwind flow field is distorted by the mechanical movement of the wind turbine blades. This has two consequences for downwind turbines: (1) the downwind turbine encounters wind flows with reduced velocity and (2) the downwind turbine encounters increased turbulence across multiple length scales via mechanical turbulence production by the upwind turbine. This increase in turbulence on top of ambient levels may increase aerodynamic fatigue loads on the blades and reduce the lifetime of turbine component parts. Furthermore, ambient atmospheric conditions, including atmospheric stability, i.e., thermal stratification in the lower boundary layer, play an important role in wake dissipation. Higher levels of ambient turbulence (i.e., a convective or unstable boundary layer) lead to higher turbulent mixing in the wake and a faster recovery in the velocity flow field downwind of a turbine. Lower levels of ambient turbulence, as in a stable boundary layer, will lead to more persistent wakes. The wake of a wind turbine can be divided into two regions: the near wake and far wake, as illustrated in Figure 1. The near wake is formed when the turbine structure alters the shape of the flow field and usually persists one rotor diameter (D) downstream. The difference between the air inside and outside of the near wake results in a shear layer. This shear layer thickens as it moves downstream and forms turbulent eddies of multiple length scales. As the wake travels downstream, it expands depending on the level of ambient turbulence and meanders (i.e., travels in non-uniform path). Schepers estimates that the wake is fully expanded at a distance of 2.25 D and the far wake region begins at 2-5 D downstream. The actual distance traveled before the wake recovers to its inflow velocity is dependent on the amount ambient turbulence, the amount of wind shear, and topographical and structural effects. The maximum velocity deficit is estimated to occur at 1-2 D but can be longer under low levels of ambient turbulence. Our understanding of turbine wakes comes from wind tunnel experiments, field experiments, numerical simulations, and from studies utilizing both experimental and modeling methods. It is well documented that downwind turbines in multi-Megawatt wind farms often produce less power than upwind turbine rows. These wake-induced power losses have been estimated from 5% to up to 40% depending on the turbine operating settings (e.g., thrust coefficient), number of turbine rows, turbine size (e.g., rotor diameter and hub-height), wind farm terrain, and atmospheric flow conditions (e.g., ambient wind speed, turbulence, and atmospheric stability). Early work by Elliott and Cadogan suggested that power data for different turbulent conditions be segregated to distinguish the effects of turbulence on wind farm power production. This may be especially important for downwind turbines within wind farms, as chaotic and turbulent wake flows increase stress on downstream turbines. Impacts of stability on turbine wakes and power production have been examined for a flat terrain, moderate size (43 turbines) wind farm in Minnesota and for an offshore, 80 turbine wind farm off the coast of Denmark. Conzemius found it difficult to distinguish wakes (i.e., downwind velocity deficits) when the atmosphere was convective as large amounts of scatter were present in the turbine nacelle wind speed data. This suggested that high levels of turbulence broke-up the wake via large buoyancy effects, which are generally on the order of 1 km in size. On the other hand, they found pronounced wake effects when the atmosphere was very stable and turbulence was either suppressed or the length scale was reduced as turbulence in this case was mechanically produced (i.e., friction forces). This led to larger reductions at downwind turbines and maximum velocity (power) deficits reached up to 50% (70%) during strongly stable conditions. At an offshore Danish wind farm, Hansen et al. found a strong negative correlation between power deficit and ambient turbulence intensity (i.e., atmospheric stability). Under convective conditions, when turbulence levels were relatively high, smallest power deficits were observed. Power deficits approaching 35 to 40% were found inside the wind farm during stable conditions." @default.
- W1530607325 created "2016-06-24" @default.
- W1530607325 creator A5033422030 @default.
- W1530607325 creator A5075647310 @default.
- W1530607325 creator A5091611341 @default.
- W1530607325 date "2012-01-25" @default.
- W1530607325 modified "2023-09-23" @default.
- W1530607325 title "Synergistic Effects of Turbine Wakes and Atmospheric Stability on Power Production at an Onshore Wind Farm" @default.
- W1530607325 cites W120645161 @default.
- W1530607325 cites W145476212 @default.
- W1530607325 cites W1539936032 @default.
- W1530607325 cites W1614240324 @default.
- W1530607325 cites W1663630502 @default.
- W1530607325 cites W1919142796 @default.
- W1530607325 cites W1931511542 @default.
- W1530607325 cites W1934852626 @default.
- W1530607325 cites W2003080744 @default.
- W1530607325 cites W2005689696 @default.
- W1530607325 cites W2005748267 @default.
- W1530607325 cites W2082768660 @default.
- W1530607325 cites W2087300666 @default.
- W1530607325 cites W2092201003 @default.
- W1530607325 cites W2103706547 @default.
- W1530607325 cites W2106564841 @default.
- W1530607325 cites W2107757677 @default.
- W1530607325 cites W2109655184 @default.
- W1530607325 cites W2130523818 @default.
- W1530607325 cites W2134118153 @default.
- W1530607325 cites W2155772953 @default.
- W1530607325 cites W2161750796 @default.
- W1530607325 cites W2162743401 @default.
- W1530607325 cites W2168667493 @default.
- W1530607325 cites W2317224792 @default.
- W1530607325 cites W2883928757 @default.
- W1530607325 cites W3127111314 @default.
- W1530607325 doi "https://doi.org/10.2172/1035607" @default.
- W1530607325 hasPublicationYear "2012" @default.
- W1530607325 type Work @default.
- W1530607325 sameAs 1530607325 @default.
- W1530607325 citedByCount "4" @default.
- W1530607325 countsByYear W15306073252013 @default.
- W1530607325 countsByYear W15306073252015 @default.
- W1530607325 countsByYear W15306073252017 @default.
- W1530607325 countsByYear W15306073252020 @default.
- W1530607325 crossrefType "report" @default.
- W1530607325 hasAuthorship W1530607325A5033422030 @default.
- W1530607325 hasAuthorship W1530607325A5075647310 @default.
- W1530607325 hasAuthorship W1530607325A5091611341 @default.
- W1530607325 hasBestOaLocation W15306073252 @default.
- W1530607325 hasConcept C111603439 @default.
- W1530607325 hasConcept C118536763 @default.
- W1530607325 hasConcept C121332964 @default.
- W1530607325 hasConcept C127313418 @default.
- W1530607325 hasConcept C127413603 @default.
- W1530607325 hasConcept C13393347 @default.
- W1530607325 hasConcept C135558025 @default.
- W1530607325 hasConcept C146978453 @default.
- W1530607325 hasConcept C153294291 @default.
- W1530607325 hasConcept C15476950 @default.
- W1530607325 hasConcept C161067210 @default.
- W1530607325 hasConcept C196558001 @default.
- W1530607325 hasConcept C2778449969 @default.
- W1530607325 hasConcept C39432304 @default.
- W1530607325 hasConcept C48939323 @default.
- W1530607325 hasConcept C57879066 @default.
- W1530607325 hasConcept C86338904 @default.
- W1530607325 hasConcept C89298926 @default.
- W1530607325 hasConcept C91586092 @default.
- W1530607325 hasConceptScore W1530607325C111603439 @default.
- W1530607325 hasConceptScore W1530607325C118536763 @default.
- W1530607325 hasConceptScore W1530607325C121332964 @default.
- W1530607325 hasConceptScore W1530607325C127313418 @default.
- W1530607325 hasConceptScore W1530607325C127413603 @default.
- W1530607325 hasConceptScore W1530607325C13393347 @default.
- W1530607325 hasConceptScore W1530607325C135558025 @default.
- W1530607325 hasConceptScore W1530607325C146978453 @default.
- W1530607325 hasConceptScore W1530607325C153294291 @default.
- W1530607325 hasConceptScore W1530607325C15476950 @default.
- W1530607325 hasConceptScore W1530607325C161067210 @default.
- W1530607325 hasConceptScore W1530607325C196558001 @default.
- W1530607325 hasConceptScore W1530607325C2778449969 @default.
- W1530607325 hasConceptScore W1530607325C39432304 @default.
- W1530607325 hasConceptScore W1530607325C48939323 @default.
- W1530607325 hasConceptScore W1530607325C57879066 @default.
- W1530607325 hasConceptScore W1530607325C86338904 @default.
- W1530607325 hasConceptScore W1530607325C89298926 @default.
- W1530607325 hasConceptScore W1530607325C91586092 @default.
- W1530607325 hasLocation W15306073251 @default.
- W1530607325 hasLocation W15306073252 @default.
- W1530607325 hasLocation W15306073253 @default.
- W1530607325 hasOpenAccess W1530607325 @default.
- W1530607325 hasPrimaryLocation W15306073251 @default.
- W1530607325 hasRelatedWork W1539936032 @default.
- W1530607325 hasRelatedWork W2004860987 @default.
- W1530607325 hasRelatedWork W2151207930 @default.
- W1530607325 hasRelatedWork W2294528585 @default.
- W1530607325 hasRelatedWork W2368610592 @default.
- W1530607325 hasRelatedWork W2524557909 @default.
- W1530607325 hasRelatedWork W2591703804 @default.
- W1530607325 hasRelatedWork W2952693104 @default.