Matches in SemOpenAlex for { <https://semopenalex.org/work/W1530638878> ?p ?o ?g. }
- W1530638878 endingPage "e0131489" @default.
- W1530638878 startingPage "e0131489" @default.
- W1530638878 abstract "Temperature is a predominant environmental factor affecting grass germination and distribution. Various thermal-germination models for prediction of grass seed germination have been reported, in which the relationship between temperature and germination were defined with kernel functions, such as quadratic or quintic function. However, their prediction accuracies warrant further improvements. The purpose of this study is to evaluate the relative prediction accuracies of genetic algorithm (GA) models, which are automatically parameterized with observed germination data. The seeds of five P. pratensis (Kentucky bluegrass, KB) cultivars were germinated under 36 day/night temperature regimes ranging from 5/5 to 40/40°C with 5°C increments. Results showed that optimal germination percentages of all five tested KB cultivars were observed under a fluctuating temperature regime of 20/25°C. Meanwhile, the constant temperature regimes (e.g., 5/5, 10/10, 15/15°C, etc.) suppressed the germination of all five cultivars. Furthermore, the back propagation artificial neural network (BP-ANN) algorithm was integrated to optimize temperature-germination response models from these observed germination data. It was found that integrations of GA-BP-ANN (back propagation aided genetic algorithm artificial neural network) significantly reduced the Root Mean Square Error (RMSE) values from 0.21~0.23 to 0.02~0.09. In an effort to provide a more reliable prediction of optimum sowing time for the tested KB cultivars in various regions in the country, the optimized GA-BP-ANN models were applied to map spatial and temporal germination percentages of blue grass cultivars in China. Our results demonstrate that the GA-BP-ANN model is a convenient and reliable option for constructing thermal-germination response models since it automates model parameterization and has excellent prediction accuracy." @default.
- W1530638878 created "2016-06-24" @default.
- W1530638878 creator A5028688583 @default.
- W1530638878 creator A5035077456 @default.
- W1530638878 creator A5035545216 @default.
- W1530638878 creator A5046292715 @default.
- W1530638878 creator A5067960942 @default.
- W1530638878 creator A5076859280 @default.
- W1530638878 creator A5089003857 @default.
- W1530638878 creator A5089994414 @default.
- W1530638878 date "2015-07-08" @default.
- W1530638878 modified "2023-09-27" @default.
- W1530638878 title "Application of Genetic Algorithm to Predict Optimal Sowing Region and Timing for Kentucky Bluegrass in China" @default.
- W1530638878 cites W113524616 @default.
- W1530638878 cites W1544693852 @default.
- W1530638878 cites W1546243011 @default.
- W1530638878 cites W1851592451 @default.
- W1530638878 cites W1962890221 @default.
- W1530638878 cites W1964122898 @default.
- W1530638878 cites W1977844392 @default.
- W1530638878 cites W1979653081 @default.
- W1530638878 cites W1979923469 @default.
- W1530638878 cites W1981122203 @default.
- W1530638878 cites W1984278043 @default.
- W1530638878 cites W1996605612 @default.
- W1530638878 cites W1999337795 @default.
- W1530638878 cites W1999537060 @default.
- W1530638878 cites W2002165370 @default.
- W1530638878 cites W2002252560 @default.
- W1530638878 cites W2007867145 @default.
- W1530638878 cites W2016559808 @default.
- W1530638878 cites W2022497094 @default.
- W1530638878 cites W2023527286 @default.
- W1530638878 cites W2029021753 @default.
- W1530638878 cites W2030691215 @default.
- W1530638878 cites W2033863014 @default.
- W1530638878 cites W2038641755 @default.
- W1530638878 cites W2041487583 @default.
- W1530638878 cites W2042624595 @default.
- W1530638878 cites W2051335452 @default.
- W1530638878 cites W2066571628 @default.
- W1530638878 cites W2094558784 @default.
- W1530638878 cites W2095955255 @default.
- W1530638878 cites W2096274364 @default.
- W1530638878 cites W2097533491 @default.
- W1530638878 cites W2109158356 @default.
- W1530638878 cites W2112457821 @default.
- W1530638878 cites W2114587549 @default.
- W1530638878 cites W2120167066 @default.
- W1530638878 cites W2129710491 @default.
- W1530638878 cites W2136027860 @default.
- W1530638878 cites W2138424003 @default.
- W1530638878 cites W2139096972 @default.
- W1530638878 cites W2152304531 @default.
- W1530638878 cites W2152772137 @default.
- W1530638878 cites W2158475956 @default.
- W1530638878 cites W2158534713 @default.
- W1530638878 cites W2164056101 @default.
- W1530638878 cites W2166820722 @default.
- W1530638878 cites W2167159964 @default.
- W1530638878 cites W2173721639 @default.
- W1530638878 cites W2187330829 @default.
- W1530638878 cites W2187503574 @default.
- W1530638878 cites W2189134685 @default.
- W1530638878 cites W2204391009 @default.
- W1530638878 cites W2284658466 @default.
- W1530638878 cites W2327281711 @default.
- W1530638878 cites W2334742165 @default.
- W1530638878 cites W2494404907 @default.
- W1530638878 cites W4235583873 @default.
- W1530638878 doi "https://doi.org/10.1371/journal.pone.0131489" @default.
- W1530638878 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4496032" @default.
- W1530638878 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26154163" @default.
- W1530638878 hasPublicationYear "2015" @default.
- W1530638878 type Work @default.
- W1530638878 sameAs 1530638878 @default.
- W1530638878 citedByCount "1" @default.
- W1530638878 countsByYear W15306388782018 @default.
- W1530638878 crossrefType "journal-article" @default.
- W1530638878 hasAuthorship W1530638878A5028688583 @default.
- W1530638878 hasAuthorship W1530638878A5035077456 @default.
- W1530638878 hasAuthorship W1530638878A5035545216 @default.
- W1530638878 hasAuthorship W1530638878A5046292715 @default.
- W1530638878 hasAuthorship W1530638878A5067960942 @default.
- W1530638878 hasAuthorship W1530638878A5076859280 @default.
- W1530638878 hasAuthorship W1530638878A5089003857 @default.
- W1530638878 hasAuthorship W1530638878A5089994414 @default.
- W1530638878 hasBestOaLocation W15306388781 @default.
- W1530638878 hasConcept C100701293 @default.
- W1530638878 hasConcept C105795698 @default.
- W1530638878 hasConcept C139945424 @default.
- W1530638878 hasConcept C144027150 @default.
- W1530638878 hasConcept C168741863 @default.
- W1530638878 hasConcept C197321923 @default.
- W1530638878 hasConcept C2777461220 @default.
- W1530638878 hasConcept C33923547 @default.
- W1530638878 hasConcept C59822182 @default.
- W1530638878 hasConcept C6557445 @default.