Matches in SemOpenAlex for { <https://semopenalex.org/work/W153184444> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W153184444 abstract "Artificial life is the simulation and synthesis of living systems, and ALife models show how interactions between simple entities give rise to complex effects. Ecology is the study of the distribution and abundance of organisms, and ecological modelling involves fitting a linear model to a large data set and using that model to identify key causal factors at work in a complex ecosystem. We are interested in whether the individualbased modelling approach of ALife can be usefully employed in ecology. ALife models are “opaque thought experiments” (Di Paolo et al., 2000, Proc. ALife VII, p.497). They show that a phenomenon can arise from a given set of assumptions in cases where the implication is not clear from intuition alone: e.g., that spatial structure in a population can lead to altruistic behaviour. This type of modelling can be useful to ecology by showing the plausibility of a novel concept or process, which in turn suggests new natural experiments and new forms of data to collect. However, we argue that ALife models can go beyond this “proof of concept” role and serve as a direct account of data in the same way that statistical models do. We focus on a typical problem from ecology: the effect of clearing powerline corridors through a forest on the local wildlife populations (Clarke et al., 2006,Wildlife Research, 33, p.615). The real data set in this case is complex and, of course, we don’t know the true effects that underlie it. We therefore generated a fictional data set that reflects aspects of the original problem while allowing complete control over the simulated environment. The idea is to construct a test case for looking at the relative success of different modelling approaches. We know the true picture because we generated the data, but which modelling approach will get closer to the truth? The fitting of generalized linear models as is conventional in ecology, or the use of individual-based simulations as in ALife? Statistical models are fitted using some variant of the method of maximum likelihood: given the data, which of the models in the family we’re considering (e.g., a linear regression) makes the observed data most plausible? When dealing with simulations, however, it is difficult to establish that one model is a better fit to data than another. Simulations have many parameters, it may be difficult to determine a level of granularity at which the simulation output is supposed to “match” the data, and there will be no analytically tractable likelihood function. These problems are solved by the method of indirect inference (Gouri´eroux et al., 1993, J. Applied Econometrics, 8, p.S85) in which an auxiliary model is fitted to both the real data and to the output from competing simulation models. The best simulation model is the one producing the closest match to the data in terms of fitted parameter values in the auxiliary model. Using indirect inference with our fictional data set we demonstrate that ALife simulation models can be fitted to realistic ecological data, that they can out-compete standard statistical approaches, and that they can thus be used in ecology for more than just conceptual exploration." @default.
- W153184444 created "2016-06-24" @default.
- W153184444 creator A5030007414 @default.
- W153184444 creator A5052451682 @default.
- W153184444 creator A5082564115 @default.
- W153184444 date "2008-01-01" @default.
- W153184444 modified "2023-09-23" @default.
- W153184444 title "What can artificial life offer ecology? (abstract)" @default.
- W153184444 hasPublicationYear "2008" @default.
- W153184444 type Work @default.
- W153184444 sameAs 153184444 @default.
- W153184444 citedByCount "0" @default.
- W153184444 crossrefType "journal-article" @default.
- W153184444 hasAuthorship W153184444A5030007414 @default.
- W153184444 hasAuthorship W153184444A5052451682 @default.
- W153184444 hasAuthorship W153184444A5082564115 @default.
- W153184444 hasConcept C111662179 @default.
- W153184444 hasConcept C126831891 @default.
- W153184444 hasConcept C130217890 @default.
- W153184444 hasConcept C135811302 @default.
- W153184444 hasConcept C144024400 @default.
- W153184444 hasConcept C149923435 @default.
- W153184444 hasConcept C154945302 @default.
- W153184444 hasConcept C177264268 @default.
- W153184444 hasConcept C18903297 @default.
- W153184444 hasConcept C199360897 @default.
- W153184444 hasConcept C2908647359 @default.
- W153184444 hasConcept C41008148 @default.
- W153184444 hasConcept C49539007 @default.
- W153184444 hasConcept C513806601 @default.
- W153184444 hasConcept C86803240 @default.
- W153184444 hasConceptScore W153184444C111662179 @default.
- W153184444 hasConceptScore W153184444C126831891 @default.
- W153184444 hasConceptScore W153184444C130217890 @default.
- W153184444 hasConceptScore W153184444C135811302 @default.
- W153184444 hasConceptScore W153184444C144024400 @default.
- W153184444 hasConceptScore W153184444C149923435 @default.
- W153184444 hasConceptScore W153184444C154945302 @default.
- W153184444 hasConceptScore W153184444C177264268 @default.
- W153184444 hasConceptScore W153184444C18903297 @default.
- W153184444 hasConceptScore W153184444C199360897 @default.
- W153184444 hasConceptScore W153184444C2908647359 @default.
- W153184444 hasConceptScore W153184444C41008148 @default.
- W153184444 hasConceptScore W153184444C49539007 @default.
- W153184444 hasConceptScore W153184444C513806601 @default.
- W153184444 hasConceptScore W153184444C86803240 @default.
- W153184444 hasLocation W1531844441 @default.
- W153184444 hasOpenAccess W153184444 @default.
- W153184444 hasPrimaryLocation W1531844441 @default.
- W153184444 hasRelatedWork W196210361 @default.
- W153184444 hasRelatedWork W2056051010 @default.
- W153184444 hasRelatedWork W2097811476 @default.
- W153184444 hasRelatedWork W2150888770 @default.
- W153184444 hasRelatedWork W2214270934 @default.
- W153184444 hasRelatedWork W2262737791 @default.
- W153184444 hasRelatedWork W2405262602 @default.
- W153184444 hasRelatedWork W2499390929 @default.
- W153184444 hasRelatedWork W2792176500 @default.
- W153184444 hasRelatedWork W2809425933 @default.
- W153184444 hasRelatedWork W2911507867 @default.
- W153184444 hasRelatedWork W2951406944 @default.
- W153184444 hasRelatedWork W3009807500 @default.
- W153184444 hasRelatedWork W3101863361 @default.
- W153184444 hasRelatedWork W3128577483 @default.
- W153184444 hasRelatedWork W3157652695 @default.
- W153184444 hasRelatedWork W3199453523 @default.
- W153184444 hasRelatedWork W640538338 @default.
- W153184444 isParatext "false" @default.
- W153184444 isRetracted "false" @default.
- W153184444 magId "153184444" @default.
- W153184444 workType "article" @default.