Matches in SemOpenAlex for { <https://semopenalex.org/work/W1532180908> ?p ?o ?g. }
- W1532180908 endingPage "218" @default.
- W1532180908 startingPage "161" @default.
- W1532180908 abstract "The dipole–dipoledipole–dipole interaction is the longest-range interaction possible between two neutral atoms or molecules, and in atoms, which have no permanent moments, it is usually the transition dipole moments which are important. There are many consequences of the dipole–dipole interaction, ranging from photo-association to energy transferenergy transfer in biological molecules. Nowhere, however, is the effect of the dipole–dipole interaction displayed more clearly than in the interactions between Rydberg atoms having high principal quantum number n, whose dipole moments scale as n2. One of the attractions of Rydberg atoms is that it is possible to tune the Rydberg energy levels through resonance for the dipole–dipole energy transfer.energy transfer For example, in binary energy transfer collisionsenergy transfer collision resonances as narrow as 1 MHz have been observed. The cross-sections for these resonant collisions can be described very simply in terms of radio frequency spectroscopy and more formally as the evolution of pairs of two atom, or molecular, states. The latter description can be extended easily to the description of radiatively-assisted collisions, those in which the colliding pair of atoms emits or absorbs photons during the collision. The experimental investigations of binary resonant energy transferenergy transfer collision collisions between Rydberg atoms, including radiatively-assisted collisions, are described. Laser cooling has opened several new avenues of research using the dipole–dipole interactions of Rydberg atoms. It is straightforward to produce an atomic sample dense enough that the cold atoms move a few per cent of the typical interatomic spacing on the 1 μs time scale of a typical experiment. Thus, on the time scale of interest, the atoms are frozen in place, and their properties more closely resemble those of an amorphous solid than a gas. Since the atoms are essentially stationary, an atom can interact simultaneously with all its neighbors, and the interactions are no longer binary, but many-body interactions.many body interactions The experimental exploration of these interactions in a range of experiments is described. While the many-atom interactions are the new feature of cold atoms, binary interactions are also important. For example, the use of a dipole blockadedipole blockade as a quantum gate has been proposed, and several variants of partial or local blockades have been observed. Finally, the dipole–dipole interaction leads to an attractive or repulsive force between two atoms, so that even if the atoms are initially at rest, they can attract each other, collide, and ionize, initiating the evolution of a cold Rydberg gas into an ultracold plasma.ultracold plasma" @default.
- W1532180908 created "2016-06-24" @default.
- W1532180908 creator A5009705247 @default.
- W1532180908 creator A5013487023 @default.
- W1532180908 date "2008-01-01" @default.
- W1532180908 modified "2023-10-14" @default.
- W1532180908 title "Dipole–Dipole Interactions of Rydberg Atoms" @default.
- W1532180908 cites W1549768079 @default.
- W1532180908 cites W1667480103 @default.
- W1532180908 cites W1963602469 @default.
- W1532180908 cites W1964186576 @default.
- W1532180908 cites W1964227093 @default.
- W1532180908 cites W1966067223 @default.
- W1532180908 cites W1969733862 @default.
- W1532180908 cites W1970496054 @default.
- W1532180908 cites W1971332543 @default.
- W1532180908 cites W1977282715 @default.
- W1532180908 cites W1978632419 @default.
- W1532180908 cites W1980082608 @default.
- W1532180908 cites W1985265872 @default.
- W1532180908 cites W1989812385 @default.
- W1532180908 cites W1989822615 @default.
- W1532180908 cites W1990206737 @default.
- W1532180908 cites W1991019832 @default.
- W1532180908 cites W1994922574 @default.
- W1532180908 cites W1998162900 @default.
- W1532180908 cites W2002929378 @default.
- W1532180908 cites W2009106059 @default.
- W1532180908 cites W2009433254 @default.
- W1532180908 cites W2009720940 @default.
- W1532180908 cites W2010789990 @default.
- W1532180908 cites W2014586701 @default.
- W1532180908 cites W2015038286 @default.
- W1532180908 cites W2015423556 @default.
- W1532180908 cites W2016204935 @default.
- W1532180908 cites W2017650230 @default.
- W1532180908 cites W2023386511 @default.
- W1532180908 cites W2029960032 @default.
- W1532180908 cites W2031683833 @default.
- W1532180908 cites W2032083082 @default.
- W1532180908 cites W2034836159 @default.
- W1532180908 cites W2036685315 @default.
- W1532180908 cites W2037434635 @default.
- W1532180908 cites W2037584858 @default.
- W1532180908 cites W2037639839 @default.
- W1532180908 cites W2037673434 @default.
- W1532180908 cites W2039593783 @default.
- W1532180908 cites W2040375395 @default.
- W1532180908 cites W2040584714 @default.
- W1532180908 cites W2041272010 @default.
- W1532180908 cites W2042458092 @default.
- W1532180908 cites W2043794735 @default.
- W1532180908 cites W2049327765 @default.
- W1532180908 cites W2050329660 @default.
- W1532180908 cites W2053358700 @default.
- W1532180908 cites W2054602308 @default.
- W1532180908 cites W2058247061 @default.
- W1532180908 cites W2060280478 @default.
- W1532180908 cites W2067627455 @default.
- W1532180908 cites W2071192375 @default.
- W1532180908 cites W2080258514 @default.
- W1532180908 cites W2083661006 @default.
- W1532180908 cites W2087636162 @default.
- W1532180908 cites W2090101208 @default.
- W1532180908 cites W2094035112 @default.
- W1532180908 cites W2100901412 @default.
- W1532180908 cites W2104490378 @default.
- W1532180908 cites W2114310363 @default.
- W1532180908 cites W2117276306 @default.
- W1532180908 cites W2144350220 @default.
- W1532180908 cites W2158469597 @default.
- W1532180908 cites W2323248944 @default.
- W1532180908 cites W2493957203 @default.
- W1532180908 cites W3120027366 @default.
- W1532180908 doi "https://doi.org/10.1016/s1049-250x(08)00013-x" @default.
- W1532180908 hasPublicationYear "2008" @default.
- W1532180908 type Work @default.
- W1532180908 sameAs 1532180908 @default.
- W1532180908 citedByCount "79" @default.
- W1532180908 countsByYear W15321809082012 @default.
- W1532180908 countsByYear W15321809082013 @default.
- W1532180908 countsByYear W15321809082014 @default.
- W1532180908 countsByYear W15321809082015 @default.
- W1532180908 countsByYear W15321809082016 @default.
- W1532180908 countsByYear W15321809082017 @default.
- W1532180908 countsByYear W15321809082018 @default.
- W1532180908 countsByYear W15321809082019 @default.
- W1532180908 countsByYear W15321809082020 @default.
- W1532180908 countsByYear W15321809082021 @default.
- W1532180908 countsByYear W15321809082022 @default.
- W1532180908 countsByYear W15321809082023 @default.
- W1532180908 crossrefType "book-chapter" @default.
- W1532180908 hasAuthorship W1532180908A5009705247 @default.
- W1532180908 hasAuthorship W1532180908A5013487023 @default.
- W1532180908 hasConcept C102497350 @default.
- W1532180908 hasConcept C116225407 @default.
- W1532180908 hasConcept C121332964 @default.
- W1532180908 hasConcept C139210041 @default.