Matches in SemOpenAlex for { <https://semopenalex.org/work/W1532857560> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W1532857560 abstract "Graphene, a two-dimensional (2D) honeycomb structure allotrope of carbon atoms, has a long history since the invention of the pencil [Petroski (1989)] and the linear dispersion band structure proposed by Wallace [Wal]; however, only after Novoselov et al. successively isolated graphene from graphite [Novoselov et al. (2004)], it has been studied intensively during the recent years. It draws so much attentions not only because of its potential application in future electronic devices but also because of its fundamental properties: its quasiparticles are governed by the two-dimensional Dirac equation, and exhibit a variety of phenomena such as the anomalous integer quantum Hall effect (IQHE) [Novoselov et al. (2005)] measured experimentally, a minimal conductivity at vanishing carrier concentration [Neto et al. (2009)], Kondo effect with magnetic element doping [Hentschel and Guinea (2007)], Klein tunneling in p-n junctions [Cheianov and Fal’ko (2006), Beenakker (2008)], Zitterbewegung [Katsnelson (2006)], and Schwinger pair production [Schwinger (1951); Dora and Moessner (2010)]. Although both electron-phonon coupling and photoconductivity in graphene also draws great attention [Yan et al. (2007); Satou et al. (2008); Hwang and Sarma (2008); Vasko and Ryzhii (2008); Mishchenko (2009)], the nonequilibrium behavior based on the combination of electronphonon coupling and Schwinger pair production is an intrinsic graphene property that has not been investigated. Our motivation for studying clean graphene at low temperature is based on the following effect: for a fixed electric field, below a sufficiently low temperature linear eletric transport breaks down and nonlinear transport dominates. The criteria of the strength of this field [Fritz et al. (2008)] is eE = T2/~vF (1.1) For T >√eE~vF the system is in linear transport regime while for T <√eE~vF the system is in nonlinear transport regime. From the scaling’s point of view, at the nonlinear transport regime the temperature T and electric field E are also related. In this thesis we show that the nontrivial electron distribution function can be associated with an effective temperature T which exhibits a dependence on electric field E and electron-phonon coupling g: T ∝ E1/4g(1.2) The anamolous exponent 1/4 may obtained from scaling. Meanwhile, yet we cannot obtain the distribution function, however, argument based on scaling gives us the current dependence on electric field: J ∝√Eg2 (1.3) which is a very different result compared with the results in which electrons do not experience scattering. This result provides us with important insighht into the correct nonequilibrium distribution function because now we know what the electric field dependence of current must be. Due to the applied field, the electronic system produces heat which prevents us from reaching a steady state. In order to remove Joule heat, we imagine that we have a graphene flake attached to a semiconductor substrate. Joule heat either transport to its environment or to the substrate as shown in 1.1. The red lines represent heat current flowing from high temperature sample to the low temperature reservoir. However, for a very large system, the temperature gradient is 0 in the plane so heat cannot be conducted outside in the horizontal direction, while the energy gap in semiconductor also forbids electron current from flowing into the substrate. But for phonon thermal current, the temperature gradient is large in the vertical direction, so heat can be transported into the substrate via phonons. There are two possible channels of phonon degrees of freedom, acoustic phonon and optical phonon. As we can see from Fig. 1.2 [Kusminskiy et al. (2009)], since the optical phonon excitation energy is too large for a low temperature system, it is note likely to be excited by the nonlinear electric field, so the possible way left is by electron-acoustic phonon scattering. Here acoustic phonon acts as a heat bath to absorb the Joule heat created by pair production process. Hence the scattering process is determined by electron-acoustic phonon interaction which will be introduced in section 3.3." @default.
- W1532857560 created "2016-06-24" @default.
- W1532857560 creator A5041144422 @default.
- W1532857560 date "2011-01-01" @default.
- W1532857560 modified "2023-09-25" @default.
- W1532857560 title "Hot electron dynamics in graphene" @default.
- W1532857560 cites W1606101578 @default.
- W1532857560 cites W1967202721 @default.
- W1532857560 cites W1970035931 @default.
- W1532857560 cites W1972548120 @default.
- W1532857560 cites W1981659415 @default.
- W1532857560 cites W1984814850 @default.
- W1532857560 cites W1999873859 @default.
- W1532857560 cites W2002085546 @default.
- W1532857560 cites W2003832618 @default.
- W1532857560 cites W2007929993 @default.
- W1532857560 cites W2023426967 @default.
- W1532857560 cites W2024681488 @default.
- W1532857560 cites W2033506354 @default.
- W1532857560 cites W2047923639 @default.
- W1532857560 cites W2058122340 @default.
- W1532857560 cites W2062972495 @default.
- W1532857560 cites W2082669889 @default.
- W1532857560 cites W2093212801 @default.
- W1532857560 cites W2100457562 @default.
- W1532857560 cites W2105685140 @default.
- W1532857560 cites W2125284466 @default.
- W1532857560 cites W2330633042 @default.
- W1532857560 doi "https://doi.org/10.2172/1048505" @default.
- W1532857560 hasPublicationYear "2011" @default.
- W1532857560 type Work @default.
- W1532857560 sameAs 1532857560 @default.
- W1532857560 citedByCount "0" @default.
- W1532857560 crossrefType "report" @default.
- W1532857560 hasAuthorship W1532857560A5041144422 @default.
- W1532857560 hasBestOaLocation W15328575601 @default.
- W1532857560 hasConcept C120398109 @default.
- W1532857560 hasConcept C121332964 @default.
- W1532857560 hasConcept C136479403 @default.
- W1532857560 hasConcept C147120987 @default.
- W1532857560 hasConcept C192562407 @default.
- W1532857560 hasConcept C26873012 @default.
- W1532857560 hasConcept C30080830 @default.
- W1532857560 hasConcept C54101563 @default.
- W1532857560 hasConcept C62520636 @default.
- W1532857560 hasConcept C79955541 @default.
- W1532857560 hasConceptScore W1532857560C120398109 @default.
- W1532857560 hasConceptScore W1532857560C121332964 @default.
- W1532857560 hasConceptScore W1532857560C136479403 @default.
- W1532857560 hasConceptScore W1532857560C147120987 @default.
- W1532857560 hasConceptScore W1532857560C192562407 @default.
- W1532857560 hasConceptScore W1532857560C26873012 @default.
- W1532857560 hasConceptScore W1532857560C30080830 @default.
- W1532857560 hasConceptScore W1532857560C54101563 @default.
- W1532857560 hasConceptScore W1532857560C62520636 @default.
- W1532857560 hasConceptScore W1532857560C79955541 @default.
- W1532857560 hasLocation W15328575601 @default.
- W1532857560 hasLocation W15328575602 @default.
- W1532857560 hasLocation W15328575603 @default.
- W1532857560 hasOpenAccess W1532857560 @default.
- W1532857560 hasPrimaryLocation W15328575601 @default.
- W1532857560 hasRelatedWork W1517217186 @default.
- W1532857560 hasRelatedWork W2018421004 @default.
- W1532857560 hasRelatedWork W2028231373 @default.
- W1532857560 hasRelatedWork W2029168751 @default.
- W1532857560 hasRelatedWork W2034057438 @default.
- W1532857560 hasRelatedWork W2043068233 @default.
- W1532857560 hasRelatedWork W2069623535 @default.
- W1532857560 hasRelatedWork W2479376060 @default.
- W1532857560 hasRelatedWork W289860729 @default.
- W1532857560 hasRelatedWork W2952148477 @default.
- W1532857560 isParatext "false" @default.
- W1532857560 isRetracted "false" @default.
- W1532857560 magId "1532857560" @default.
- W1532857560 workType "report" @default.