Matches in SemOpenAlex for { <https://semopenalex.org/work/W1533034017> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W1533034017 abstract "This chapter deals with supervised learning problems under the ranking framework. Ranking algorithms are typically introduced as a tool for personalizing the order in which document recommendations or search results in the web, for example are presented. That is, the more important a result is to the user, the earlier it should be listed. To this end, two possible settings can be considered : i. the algorithm tries to interactively rearrange the results of one search such that relevant results come the closer to the top the more (implicit) feedback the user provides, ii. the algorithm tries to generalize over several queries and presents the results of one search in an order depending on the feedback obtained from previous searches. The first setting deals with an active learning while the second setting deals with a passive supervised learning. This kind of problems have gain major attention given the nowadays amount of available informations. This is without doubt a challenging task in the medium and large scale context. Several methods have been proposed to solve these problems. For the passive setting, the Rankboost algorithm (Freund et al. (2003)) is an adaptation from the Adaboost algorithm to the ranking problem. This is a boosting algorithm which works by iteratively building a linear combination of several “weak” algorithms to form a more accurate algorithm. The Pranking algorithm (Crammer & Singer (2001)) is an online version of the weighted algorithm. The SVRank and RankSVMalgorithms are the adaptation of the Support Vector machines for classification and regression, respectively, while the MPRank (Cortes et al. (2007)) is a magnitude-preserving algorithm, which searches not only to keep the relative position of each sample but also to preserve the distance given by the correct ordering. This last algorithm has as well the form of a regularization problem as the two previous with a different cost function. Later, the Ranking SVM (RankSVM) algorithm was proposed by Herbrich et al. (2000) and Joachims (2002) as an optimization problem with constraints given by the induced graph of the ordered queries’ results. This algorithm forms part of the family of kernel algorithms of the SVM type (Boser et al. (1992); Scholkopf & Smola (2002)). Kernel methods like the SVM or the ranking SVM solve optimization problems of the form O pe n A cc es s D at ab as e w w w .in te ch w eb .o rg" @default.
- W1533034017 created "2016-06-24" @default.
- W1533034017 creator A5003774172 @default.
- W1533034017 creator A5017956425 @default.
- W1533034017 creator A5025793777 @default.
- W1533034017 creator A5076830916 @default.
- W1533034017 date "2009-01-01" @default.
- W1533034017 modified "2023-09-23" @default.
- W1533034017 title "Model Selection for Ranking SVM Using Regularization Path" @default.
- W1533034017 cites W1554944419 @default.
- W1533034017 cites W1579534531 @default.
- W1533034017 cites W2015856032 @default.
- W1533034017 cites W2047221353 @default.
- W1533034017 cites W2087347434 @default.
- W1533034017 cites W2107890099 @default.
- W1533034017 cites W2133958955 @default.
- W1533034017 cites W2154420049 @default.
- W1533034017 cites W2171541062 @default.
- W1533034017 cites W2795413297 @default.
- W1533034017 cites W2988119488 @default.
- W1533034017 cites W3119651796 @default.
- W1533034017 doi "https://doi.org/10.5772/6556" @default.
- W1533034017 hasPublicationYear "2009" @default.
- W1533034017 type Work @default.
- W1533034017 sameAs 1533034017 @default.
- W1533034017 citedByCount "2" @default.
- W1533034017 crossrefType "journal-article" @default.
- W1533034017 hasAuthorship W1533034017A5003774172 @default.
- W1533034017 hasAuthorship W1533034017A5017956425 @default.
- W1533034017 hasAuthorship W1533034017A5025793777 @default.
- W1533034017 hasAuthorship W1533034017A5076830916 @default.
- W1533034017 hasConcept C11413529 @default.
- W1533034017 hasConcept C119857082 @default.
- W1533034017 hasConcept C12267149 @default.
- W1533034017 hasConcept C124101348 @default.
- W1533034017 hasConcept C124975894 @default.
- W1533034017 hasConcept C154945302 @default.
- W1533034017 hasConcept C189430467 @default.
- W1533034017 hasConcept C41008148 @default.
- W1533034017 hasConcept C46686674 @default.
- W1533034017 hasConcept C86037889 @default.
- W1533034017 hasConceptScore W1533034017C11413529 @default.
- W1533034017 hasConceptScore W1533034017C119857082 @default.
- W1533034017 hasConceptScore W1533034017C12267149 @default.
- W1533034017 hasConceptScore W1533034017C124101348 @default.
- W1533034017 hasConceptScore W1533034017C124975894 @default.
- W1533034017 hasConceptScore W1533034017C154945302 @default.
- W1533034017 hasConceptScore W1533034017C189430467 @default.
- W1533034017 hasConceptScore W1533034017C41008148 @default.
- W1533034017 hasConceptScore W1533034017C46686674 @default.
- W1533034017 hasConceptScore W1533034017C86037889 @default.
- W1533034017 hasLocation W15330340171 @default.
- W1533034017 hasOpenAccess W1533034017 @default.
- W1533034017 hasPrimaryLocation W15330340171 @default.
- W1533034017 hasRelatedWork W1451180580 @default.
- W1533034017 hasRelatedWork W1527260130 @default.
- W1533034017 hasRelatedWork W1555168537 @default.
- W1533034017 hasRelatedWork W1642111636 @default.
- W1533034017 hasRelatedWork W1714704734 @default.
- W1533034017 hasRelatedWork W1836360444 @default.
- W1533034017 hasRelatedWork W2015725301 @default.
- W1533034017 hasRelatedWork W2244118489 @default.
- W1533034017 hasRelatedWork W2328446763 @default.
- W1533034017 hasRelatedWork W2346822065 @default.
- W1533034017 hasRelatedWork W243856199 @default.
- W1533034017 hasRelatedWork W2507209622 @default.
- W1533034017 hasRelatedWork W2516496365 @default.
- W1533034017 hasRelatedWork W258707964 @default.
- W1533034017 hasRelatedWork W2749962142 @default.
- W1533034017 hasRelatedWork W2781787622 @default.
- W1533034017 hasRelatedWork W2909206416 @default.
- W1533034017 hasRelatedWork W3015121100 @default.
- W1533034017 hasRelatedWork W3108747994 @default.
- W1533034017 hasRelatedWork W327359575 @default.
- W1533034017 isParatext "false" @default.
- W1533034017 isRetracted "false" @default.
- W1533034017 magId "1533034017" @default.
- W1533034017 workType "article" @default.