Matches in SemOpenAlex for { <https://semopenalex.org/work/W1533820392> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W1533820392 abstract "In today's industry, it is imperative that a thorough knowledge of the mechanical properties of materials be known to the designer in order to come up with a design of parts, tools, or instruments that will meet the highly competitive industrial requirements. It is well known that mechanical properties of various materials are in turn highly affected by the manner in which they are subjected to loadings of both static and fatigue types, and by its manufacturing process, in particular the heat treatment the material receives during its manufacturing. This further makes it required to perform the proper experiments and laboratory tests with regard to fatigue in the field of fatigue mechanics in order to obtain the necessary knowledge for the material properties for design purposes. It is emphasized that such properties obtained from monotonic tests are of no value and by no means recommended. To this end, on one hand metallurgical engineers often attempt to obtain their desired material properties and efficiencies by making variations in the parameters governing the manufacturing process. On the other hand, yet, the high costs of fatigue tests as compared with those of the simple monotonic tests, as well as the need for complex testing equipment are the major drawbacks in the way of such tests, encouraging the use of approximate and empirical mathematical models based on the data obtained from the monotonic tests. This has been quite evident among researchers and industry alike, as indeed indicated by the variety of ongoing articles published in the field. In the area of materials engineering as well, the knowledge of the effect of different manufacturing processing parameters on the material properties in view of the highly expensive nature of the tests are also of particular interest. Use of Artificial Neural Network (ANN) models is considered as a less expensive, less tedious, more efficient, and highly reliable alternative means for the estimation of the material fatigue properties using the data obtained from the monotonic tests. In addition, the ANN methodology was also employed for the parameter estimation related to the manufacturing process of materials. The method was also used to investigate and infer the manner in which such material properties are affected by variations in the parameters that are the main governing elements of these properties. Many researchers have indeed pursued such applications in their studies (Bucar et al., 2006; Genel, 2004; Han, 1995; Lee et al., 1999; Liao et al., 2008; Malinov et al., 2001; Mathew et al., 2007; Mathur et al. 2007; Park & Kang, 2007; Pleune & Chopra, 2000; Srinivasan et al., 2003;" @default.
- W1533820392 created "2016-06-24" @default.
- W1533820392 creator A5061098982 @default.
- W1533820392 creator A5078400337 @default.
- W1533820392 creator A5081831181 @default.
- W1533820392 date "2011-04-04" @default.
- W1533820392 modified "2023-10-18" @default.
- W1533820392 title "Application of Artificial Neural Networks in the Estimation of Mechanical Properties of Materials" @default.
- W1533820392 cites W1552058488 @default.
- W1533820392 cites W1963999076 @default.
- W1533820392 cites W1989088519 @default.
- W1533820392 cites W1991384818 @default.
- W1533820392 cites W1999717694 @default.
- W1533820392 cites W2006261727 @default.
- W1533820392 cites W2012808413 @default.
- W1533820392 cites W2012928072 @default.
- W1533820392 cites W2017290161 @default.
- W1533820392 cites W2017778996 @default.
- W1533820392 cites W2018218250 @default.
- W1533820392 cites W2019842924 @default.
- W1533820392 cites W2025428143 @default.
- W1533820392 cites W2027861638 @default.
- W1533820392 cites W2034957637 @default.
- W1533820392 cites W2053113637 @default.
- W1533820392 cites W2054754519 @default.
- W1533820392 cites W2059797288 @default.
- W1533820392 cites W2062408104 @default.
- W1533820392 cites W2065928586 @default.
- W1533820392 cites W2070765914 @default.
- W1533820392 cites W2077764252 @default.
- W1533820392 cites W2109348144 @default.
- W1533820392 cites W2154808242 @default.
- W1533820392 cites W2155482699 @default.
- W1533820392 cites W2403201314 @default.
- W1533820392 cites W3209853906 @default.
- W1533820392 cites W163961846 @default.
- W1533820392 doi "https://doi.org/10.5772/16094" @default.
- W1533820392 hasPublicationYear "2011" @default.
- W1533820392 type Work @default.
- W1533820392 sameAs 1533820392 @default.
- W1533820392 citedByCount "2" @default.
- W1533820392 countsByYear W15338203922018 @default.
- W1533820392 countsByYear W15338203922022 @default.
- W1533820392 crossrefType "book-chapter" @default.
- W1533820392 hasAuthorship W1533820392A5061098982 @default.
- W1533820392 hasAuthorship W1533820392A5078400337 @default.
- W1533820392 hasAuthorship W1533820392A5081831181 @default.
- W1533820392 hasBestOaLocation W15338203921 @default.
- W1533820392 hasConcept C154945302 @default.
- W1533820392 hasConcept C186060115 @default.
- W1533820392 hasConcept C192562407 @default.
- W1533820392 hasConcept C41008148 @default.
- W1533820392 hasConcept C50644808 @default.
- W1533820392 hasConcept C86803240 @default.
- W1533820392 hasConceptScore W1533820392C154945302 @default.
- W1533820392 hasConceptScore W1533820392C186060115 @default.
- W1533820392 hasConceptScore W1533820392C192562407 @default.
- W1533820392 hasConceptScore W1533820392C41008148 @default.
- W1533820392 hasConceptScore W1533820392C50644808 @default.
- W1533820392 hasConceptScore W1533820392C86803240 @default.
- W1533820392 hasLocation W15338203921 @default.
- W1533820392 hasLocation W15338203922 @default.
- W1533820392 hasOpenAccess W1533820392 @default.
- W1533820392 hasPrimaryLocation W15338203921 @default.
- W1533820392 hasRelatedWork W1985010875 @default.
- W1533820392 hasRelatedWork W1987591823 @default.
- W1533820392 hasRelatedWork W2159443810 @default.
- W1533820392 hasRelatedWork W2386387936 @default.
- W1533820392 hasRelatedWork W2899084033 @default.
- W1533820392 hasRelatedWork W3001020386 @default.
- W1533820392 hasRelatedWork W3107474891 @default.
- W1533820392 hasRelatedWork W4362499384 @default.
- W1533820392 hasRelatedWork W644753246 @default.
- W1533820392 hasRelatedWork W1629725936 @default.
- W1533820392 isParatext "false" @default.
- W1533820392 isRetracted "false" @default.
- W1533820392 magId "1533820392" @default.
- W1533820392 workType "book-chapter" @default.