Matches in SemOpenAlex for { <https://semopenalex.org/work/W1535583521> ?p ?o ?g. }
- W1535583521 abstract "Structure-based virtual screening techniques can help to identify new lead structures and complement other screening approaches in drug discovery. Prior to docking, the data (protein crystal structures and ligands) should be prepared with great attention to molecular and chemical details.Using a subset of 18 diverse targets from the recently introduced DEKOIS 2.0 benchmark set library, we found differences in the virtual screening performance of two popular docking tools (GOLD and Glide) when employing two different commercial packages (e.g. MOE and Maestro) for preparing input data. We systematically investigated the possible factors that can be responsible for the found differences in selected sets. For the Angiotensin-I-converting enzyme dataset, preparation of the bioactive molecules clearly exerted the highest influence on VS performance compared to preparation of the decoys or the target structure. The major contributing factors were different protonation states, molecular flexibility, and differences in the input conformation (particularly for cyclic moieties) of bioactives. In addition, score normalization strategies eliminated the biased docking scores shown by GOLD (ChemPLP) for the larger bioactives and produced a better performance. Generalizing these normalization strategies on the 18 DEKOIS 2.0 sets, improved the performances for the majority of GOLD (ChemPLP) docking, while it showed detrimental performances for the majority of Glide (SP) docking.In conclusion, we exemplify herein possible issues particularly during the preparation stage of molecular data and demonstrate to which extent these issues can cause perturbations in the virtual screening performance. We provide insights into what problems can occur and should be avoided, when generating benchmarks to characterize the virtual screening performance. Particularly, careful selection of an appropriate molecular preparation setup for the bioactive set and the use of score normalization for docking with GOLD (ChemPLP) appear to have a great importance for the screening performance. For virtual screening campaigns, we recommend to invest time and effort into including alternative preparation workflows into the generation of the master library, even at the cost of including multiple representations of each molecule. Graphical AbstractUsing DEKOIS 2.0 benchmark sets in structure-based virtual screening to probe the impact of molecular preparation and score normalization." @default.
- W1535583521 created "2016-06-24" @default.
- W1535583521 creator A5066957693 @default.
- W1535583521 creator A5086525697 @default.
- W1535583521 creator A5087680450 @default.
- W1535583521 date "2015-05-20" @default.
- W1535583521 modified "2023-10-14" @default.
- W1535583521 title "Applying DEKOIS 2.0 in structure-based virtual screening to probe the impact of preparation procedures and score normalization" @default.
- W1535583521 cites W121995339 @default.
- W1535583521 cites W1964513093 @default.
- W1535583521 cites W1966950894 @default.
- W1535583521 cites W1968319881 @default.
- W1535583521 cites W1970208561 @default.
- W1535583521 cites W1971062326 @default.
- W1535583521 cites W1973191530 @default.
- W1535583521 cites W1973974137 @default.
- W1535583521 cites W1975606737 @default.
- W1535583521 cites W1983194490 @default.
- W1535583521 cites W1985588649 @default.
- W1535583521 cites W1986182042 @default.
- W1535583521 cites W1986240377 @default.
- W1535583521 cites W1988437166 @default.
- W1535583521 cites W1995852445 @default.
- W1535583521 cites W1998848097 @default.
- W1535583521 cites W1999519914 @default.
- W1535583521 cites W2008732224 @default.
- W1535583521 cites W2009423060 @default.
- W1535583521 cites W2017338994 @default.
- W1535583521 cites W2027423337 @default.
- W1535583521 cites W2032593188 @default.
- W1535583521 cites W2038542598 @default.
- W1535583521 cites W2041203323 @default.
- W1535583521 cites W2042129725 @default.
- W1535583521 cites W2046336719 @default.
- W1535583521 cites W2047509756 @default.
- W1535583521 cites W2050456292 @default.
- W1535583521 cites W2063671284 @default.
- W1535583521 cites W2072886335 @default.
- W1535583521 cites W2077627456 @default.
- W1535583521 cites W2079331631 @default.
- W1535583521 cites W2082397316 @default.
- W1535583521 cites W2093239283 @default.
- W1535583521 cites W2097420030 @default.
- W1535583521 cites W2097980962 @default.
- W1535583521 cites W2107506448 @default.
- W1535583521 cites W2110032189 @default.
- W1535583521 cites W2110947069 @default.
- W1535583521 cites W2120993382 @default.
- W1535583521 cites W2127760066 @default.
- W1535583521 cites W2133282230 @default.
- W1535583521 cites W2133773344 @default.
- W1535583521 cites W2136714130 @default.
- W1535583521 cites W2144503044 @default.
- W1535583521 cites W2154033129 @default.
- W1535583521 cites W2164008320 @default.
- W1535583521 cites W2167901867 @default.
- W1535583521 cites W2206437677 @default.
- W1535583521 cites W2949504121 @default.
- W1535583521 cites W2005671593 @default.
- W1535583521 doi "https://doi.org/10.1186/s13321-015-0074-6" @default.
- W1535583521 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4450982" @default.
- W1535583521 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26034510" @default.
- W1535583521 hasPublicationYear "2015" @default.
- W1535583521 type Work @default.
- W1535583521 sameAs 1535583521 @default.
- W1535583521 citedByCount "23" @default.
- W1535583521 countsByYear W15355835212015 @default.
- W1535583521 countsByYear W15355835212017 @default.
- W1535583521 countsByYear W15355835212018 @default.
- W1535583521 countsByYear W15355835212019 @default.
- W1535583521 countsByYear W15355835212020 @default.
- W1535583521 countsByYear W15355835212021 @default.
- W1535583521 countsByYear W15355835212022 @default.
- W1535583521 countsByYear W15355835212023 @default.
- W1535583521 crossrefType "journal-article" @default.
- W1535583521 hasAuthorship W1535583521A5066957693 @default.
- W1535583521 hasAuthorship W1535583521A5086525697 @default.
- W1535583521 hasAuthorship W1535583521A5087680450 @default.
- W1535583521 hasBestOaLocation W15355835211 @default.
- W1535583521 hasConcept C103697762 @default.
- W1535583521 hasConcept C124101348 @default.
- W1535583521 hasConcept C136886441 @default.
- W1535583521 hasConcept C144024400 @default.
- W1535583521 hasConcept C154945302 @default.
- W1535583521 hasConcept C159110408 @default.
- W1535583521 hasConcept C185592680 @default.
- W1535583521 hasConcept C19165224 @default.
- W1535583521 hasConcept C41008148 @default.
- W1535583521 hasConcept C41685203 @default.
- W1535583521 hasConcept C55493867 @default.
- W1535583521 hasConcept C70721500 @default.
- W1535583521 hasConcept C71924100 @default.
- W1535583521 hasConcept C74187038 @default.
- W1535583521 hasConcept C86803240 @default.
- W1535583521 hasConceptScore W1535583521C103697762 @default.
- W1535583521 hasConceptScore W1535583521C124101348 @default.
- W1535583521 hasConceptScore W1535583521C136886441 @default.
- W1535583521 hasConceptScore W1535583521C144024400 @default.
- W1535583521 hasConceptScore W1535583521C154945302 @default.
- W1535583521 hasConceptScore W1535583521C159110408 @default.