Matches in SemOpenAlex for { <https://semopenalex.org/work/W1536387430> ?p ?o ?g. }
- W1536387430 abstract "Cam-phasing is increasingly considered as a feasible Variable Valve Timing (VVT) technology for production engines. Additional independent control variables in a dual-independent VVT engine increase the complexity of the system, and achieving its full benefit depends critically on devising an optimum control strategy. A traditional approach relying on hardware experiments to generate set-point maps for all independent control variables leads to an exponential increase in the number of required tests and prohibitive cost. Instead, this work formulates the task of defining actuator set-points as an optimization problem. In our previous study, an optimization framework was developed and demonstrated with the objective of maximizing torque at full load. This study extends the technique and uses the optimization framework to minimize fuel consumption of a VVT engine at part load. By adding a penalty term for NOx emissions in the optimization objective, the tradeoff of fuel consumption and NOx emissions is explored. The methodology relies on high-fidelity simulations for pre-optimality studies and as means of generating data that characterize engine behavior in the multidimensional space. Artificial Neural Networks (ANN) are then trained on sets of high-fidelity simulation data and used as surrogate models, thus enabling optimization runs requiring hundreds of function evaluations. A case study performed for a DaimlerChrysler 2.4 liter fourcylinder SI engine demonstrates the use of the algorithm for minimizing fuel consumption while simultaneously meeting NOx emission targets." @default.
- W1536387430 created "2016-06-24" @default.
- W1536387430 creator A5008488669 @default.
- W1536387430 creator A5018467970 @default.
- W1536387430 creator A5034490487 @default.
- W1536387430 creator A5049909891 @default.
- W1536387430 creator A5088363980 @default.
- W1536387430 date "2006-04-03" @default.
- W1536387430 modified "2023-09-27" @default.
- W1536387430 title "Cam-phasing Optimization Using Artificial Neural Networks as Surrogate Models-Fuel Consumption and NOx Emissions" @default.
- W1536387430 cites W1481263572 @default.
- W1536387430 cites W1485663946 @default.
- W1536387430 cites W1486402192 @default.
- W1536387430 cites W1494670384 @default.
- W1536387430 cites W1497112638 @default.
- W1536387430 cites W1500588355 @default.
- W1536387430 cites W1508380831 @default.
- W1536387430 cites W1521622743 @default.
- W1536387430 cites W1523655570 @default.
- W1536387430 cites W1532300716 @default.
- W1536387430 cites W1535323047 @default.
- W1536387430 cites W1538858024 @default.
- W1536387430 cites W1546083692 @default.
- W1536387430 cites W1557405205 @default.
- W1536387430 cites W1586934008 @default.
- W1536387430 cites W1594315558 @default.
- W1536387430 cites W1756120384 @default.
- W1536387430 cites W1978439054 @default.
- W1536387430 cites W2024000878 @default.
- W1536387430 cites W2038669746 @default.
- W1536387430 cites W2093090592 @default.
- W1536387430 cites W2096894445 @default.
- W1536387430 cites W2108371740 @default.
- W1536387430 cites W2129651715 @default.
- W1536387430 cites W2138500429 @default.
- W1536387430 cites W2162404218 @default.
- W1536387430 cites W2201890914 @default.
- W1536387430 cites W2230630738 @default.
- W1536387430 cites W2235761751 @default.
- W1536387430 cites W2241957976 @default.
- W1536387430 cites W2243573767 @default.
- W1536387430 cites W2248755730 @default.
- W1536387430 cites W2253075207 @default.
- W1536387430 cites W2256249556 @default.
- W1536387430 cites W2256932913 @default.
- W1536387430 cites W2262657800 @default.
- W1536387430 cites W2275277475 @default.
- W1536387430 cites W2276314436 @default.
- W1536387430 cites W2283811715 @default.
- W1536387430 cites W2291553731 @default.
- W1536387430 cites W2301797677 @default.
- W1536387430 cites W286744041 @default.
- W1536387430 doi "https://doi.org/10.4271/2006-01-1512" @default.
- W1536387430 hasPublicationYear "2006" @default.
- W1536387430 type Work @default.
- W1536387430 sameAs 1536387430 @default.
- W1536387430 citedByCount "33" @default.
- W1536387430 countsByYear W15363874302012 @default.
- W1536387430 countsByYear W15363874302013 @default.
- W1536387430 countsByYear W15363874302014 @default.
- W1536387430 countsByYear W15363874302015 @default.
- W1536387430 countsByYear W15363874302016 @default.
- W1536387430 countsByYear W15363874302018 @default.
- W1536387430 countsByYear W15363874302019 @default.
- W1536387430 countsByYear W15363874302020 @default.
- W1536387430 crossrefType "proceedings-article" @default.
- W1536387430 hasAuthorship W1536387430A5008488669 @default.
- W1536387430 hasAuthorship W1536387430A5018467970 @default.
- W1536387430 hasAuthorship W1536387430A5034490487 @default.
- W1536387430 hasAuthorship W1536387430A5049909891 @default.
- W1536387430 hasAuthorship W1536387430A5088363980 @default.
- W1536387430 hasConcept C105923489 @default.
- W1536387430 hasConcept C11413529 @default.
- W1536387430 hasConcept C119857082 @default.
- W1536387430 hasConcept C126255220 @default.
- W1536387430 hasConcept C127413603 @default.
- W1536387430 hasConcept C131675550 @default.
- W1536387430 hasConcept C133731056 @default.
- W1536387430 hasConcept C137836250 @default.
- W1536387430 hasConcept C154945302 @default.
- W1536387430 hasConcept C171146098 @default.
- W1536387430 hasConcept C178790620 @default.
- W1536387430 hasConcept C185592680 @default.
- W1536387430 hasConcept C203032635 @default.
- W1536387430 hasConcept C33923547 @default.
- W1536387430 hasConcept C41008148 @default.
- W1536387430 hasConcept C45882903 @default.
- W1536387430 hasConcept C50644808 @default.
- W1536387430 hasConceptScore W1536387430C105923489 @default.
- W1536387430 hasConceptScore W1536387430C11413529 @default.
- W1536387430 hasConceptScore W1536387430C119857082 @default.
- W1536387430 hasConceptScore W1536387430C126255220 @default.
- W1536387430 hasConceptScore W1536387430C127413603 @default.
- W1536387430 hasConceptScore W1536387430C131675550 @default.
- W1536387430 hasConceptScore W1536387430C133731056 @default.
- W1536387430 hasConceptScore W1536387430C137836250 @default.
- W1536387430 hasConceptScore W1536387430C154945302 @default.
- W1536387430 hasConceptScore W1536387430C171146098 @default.
- W1536387430 hasConceptScore W1536387430C178790620 @default.
- W1536387430 hasConceptScore W1536387430C185592680 @default.