Matches in SemOpenAlex for { <https://semopenalex.org/work/W153644810> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W153644810 abstract "The very high temperature reactor (VHTR) concept is being developed by the US Department of Energy (DOE) and other groups around the world for the future generation of electricity at high thermal efficiency (> 48%) and co-generation of hydrogen and process heat. This Generation-IV reactor would operate at elevated exit temperatures of 1,000-1,273 K, and the fueled core would be cooled by forced convection helium gas. For the prismatic-core VHTR, which is the focus of this analysis, the velocity of the hot helium flow exiting the core into the lower plenum (LP) could be 35-70 m/s. The impingement of the resulting gas jets onto the adiabatic plate at the bottom of the LP could develop hot spots and thermal stratification and inadequate mixing of the gas exiting the vessel to the turbo-machinery for energy conversion. The complex flow field in the LP is further complicated by the presence of large cylindrical graphite posts that support the massive core and inner and outer graphite reflectors. Because there are approximately 276 channels in the VHTR core from which helium exits into the LP and a total of 155 support posts, the flow field in the LP includes cross flow, multiple jet flowmore » interaction, flow stagnation zones, vortex interaction, vortex shedding, entrainment, large variation in Reynolds number (Re), recirculation, and mixing enhancement and suppression regions. For such a complex flow field, experimental results at operating conditions are not currently available. Instead, the objective of this paper is to numerically simulate the flow field in the LP of a prismatic core VHTR using the Sandia National Laboratories Fuego, which is a 3D, massively parallel generalized computational fluid dynamics (CFD) code with numerous turbulence and buoyancy models and simulation capabilities for complex gas flow fields, with and without thermal effects. The code predictions for simpler flow fields of single and swirling gas jets, with and without a cross flow, are validated using reported experimental data and theory. The key processes in the LP are identified using phenomena identification and ranking table (PIRT). It may be argued that a CFD code that accurately simulates simplified, single-effect flow fields with increasing complexity is likely to adequately model the complex flow field in the VHTR LP, subject to a future experimental validation. The PIRT process and spatial and temporal discretizations implemented in the present analysis using Fuego established confidence in the validation and verification (V and V) calculations and in the conclusions reached based on the simulation results. The performed calculations included the helicoid vortex swirl model, the dynamic Smagorinsky large eddy simulation (LES) turbulence model, participating media radiation (PMR), and 1D conjugate heat transfer (CHT). The full-scale, half-symmetry LP mesh used in the LP simulation included unstructured hexahedral elements and accounted for the graphite posts, the helium jets, the exterior walls, and the bottom plate with an adiabatic outer surface. Results indicated significant enhancements in heat transfer, flow mixing, and entrainment in the VHTR LP when using swirling inserts at the exit of the helium flow channels into the LP. The impact of using various swirl angles on the flow mixing and heat transfer in the LP is qualified, including the formation of the central recirculation zone (CRZ), and the effect of LP height. Results also showed that in addition to the enhanced mixing, the swirling inserts result in negligible additional pressure losses and are likely to eliminate the formation of hot spots.« less" @default.
- W153644810 created "2016-06-24" @default.
- W153644810 creator A5067465569 @default.
- W153644810 creator A5084684827 @default.
- W153644810 date "2010-12-01" @default.
- W153644810 modified "2023-09-27" @default.
- W153644810 title "Coupled computational fluid dynamics and heat transfer analysis of the VHTR lower plenum" @default.
- W153644810 hasPublicationYear "2010" @default.
- W153644810 type Work @default.
- W153644810 sameAs 153644810 @default.
- W153644810 citedByCount "2" @default.
- W153644810 crossrefType "journal-article" @default.
- W153644810 hasAuthorship W153644810A5067465569 @default.
- W153644810 hasAuthorship W153644810A5084684827 @default.
- W153644810 hasConcept C116915560 @default.
- W153644810 hasConcept C121332964 @default.
- W153644810 hasConcept C127413603 @default.
- W153644810 hasConcept C135343436 @default.
- W153644810 hasConcept C139992725 @default.
- W153644810 hasConcept C140820882 @default.
- W153644810 hasConcept C1633027 @default.
- W153644810 hasConcept C168475990 @default.
- W153644810 hasConcept C182748727 @default.
- W153644810 hasConcept C184779094 @default.
- W153644810 hasConcept C192562407 @default.
- W153644810 hasConcept C196558001 @default.
- W153644810 hasConcept C24890656 @default.
- W153644810 hasConcept C40336117 @default.
- W153644810 hasConcept C50517652 @default.
- W153644810 hasConcept C546029482 @default.
- W153644810 hasConcept C57879066 @default.
- W153644810 hasConcept C97355855 @default.
- W153644810 hasConceptScore W153644810C116915560 @default.
- W153644810 hasConceptScore W153644810C121332964 @default.
- W153644810 hasConceptScore W153644810C127413603 @default.
- W153644810 hasConceptScore W153644810C135343436 @default.
- W153644810 hasConceptScore W153644810C139992725 @default.
- W153644810 hasConceptScore W153644810C140820882 @default.
- W153644810 hasConceptScore W153644810C1633027 @default.
- W153644810 hasConceptScore W153644810C168475990 @default.
- W153644810 hasConceptScore W153644810C182748727 @default.
- W153644810 hasConceptScore W153644810C184779094 @default.
- W153644810 hasConceptScore W153644810C192562407 @default.
- W153644810 hasConceptScore W153644810C196558001 @default.
- W153644810 hasConceptScore W153644810C24890656 @default.
- W153644810 hasConceptScore W153644810C40336117 @default.
- W153644810 hasConceptScore W153644810C50517652 @default.
- W153644810 hasConceptScore W153644810C546029482 @default.
- W153644810 hasConceptScore W153644810C57879066 @default.
- W153644810 hasConceptScore W153644810C97355855 @default.
- W153644810 hasLocation W1536448101 @default.
- W153644810 hasOpenAccess W153644810 @default.
- W153644810 hasPrimaryLocation W1536448101 @default.
- W153644810 hasRelatedWork W1058920764 @default.
- W153644810 hasRelatedWork W2025433386 @default.
- W153644810 hasRelatedWork W2033139175 @default.
- W153644810 hasRelatedWork W2145195182 @default.
- W153644810 hasRelatedWork W2231417480 @default.
- W153644810 hasRelatedWork W2330860813 @default.
- W153644810 hasRelatedWork W2464457968 @default.
- W153644810 hasRelatedWork W2621153681 @default.
- W153644810 hasRelatedWork W2800538449 @default.
- W153644810 hasRelatedWork W2810469484 @default.
- W153644810 hasRelatedWork W2905513360 @default.
- W153644810 hasRelatedWork W3046893288 @default.
- W153644810 hasRelatedWork W3088291663 @default.
- W153644810 hasRelatedWork W3115165405 @default.
- W153644810 hasRelatedWork W3158854301 @default.
- W153644810 hasRelatedWork W3198995198 @default.
- W153644810 hasRelatedWork W3200152013 @default.
- W153644810 hasRelatedWork W2188234857 @default.
- W153644810 hasRelatedWork W2742019611 @default.
- W153644810 hasRelatedWork W2899690712 @default.
- W153644810 isParatext "false" @default.
- W153644810 isRetracted "false" @default.
- W153644810 magId "153644810" @default.
- W153644810 workType "article" @default.