Matches in SemOpenAlex for { <https://semopenalex.org/work/W1539062885> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W1539062885 abstract "The most common class of methods for solving linear systems is the class of gradient algorithms,the most famous of which being the steepest descent (SD) algorithm. Linear systems equivalentto the quadratic optimization problems where the coefficient matrix of the linear system is theHessian of the corresponding quadratic function. In recent years, the development of a particulargradient algorithm, namely the Barzilai-Borwein (BB) algorithm, has instigated a lot of researchin the area of optimization and many algorithms now exist which have faster rates of convergencethan those possessed by the steepest descent algorithm.In this thesis, some well known gradient algorithms (which are originally developed for solvinglinear symmetric problems) are applied to non-symmetric systems of equations. Their efficiencyis demonstrated through an implementation on a constructed a class of random slightlynon-symmetric matrices E (with positive and real eigenvalues) as well as on the symmetric part ofE, ES = 12 (E +ET ), the performance of the algorithm is then investigated.Also several gradient algorithms are created that have a better performance than the Cauchy-Barzilai-Borwein (CBB) method for a non-symmetric problem when applied to another constructedclass of random slightly non-symmetric matrices A (having eigenvalues with a positivereal part). Numerically, it is established that the asymptotic rate of convergence of these algorithmsis faster when the roots of their polynomials have a Beta(2,2) distribution rather than a uniformdistribution.In fact, there is a strong dependence of the asymptotic rate of convergence on the distributionof the spectrum, this has been proven from numerical results. Most of the created algorithmsachieve faster convergence than other methods, especially with the non-clustered distribution ofthe spectrum.The modified Cauchy- Barzilai-Borwein (MCBB) algorithm is the first created algorithm whichsplits the two equal polynomial roots of the CBB algorithm into two different roots at each iteration.This means, moving the roots of the polynomial of CBB method from the real-axis to thecomplex plane where the eigenvalues of the objective matrix would lie. To attain further improvementon the convergence rates, another gradient algorithm is proposed by using theMCBB methodor CBB method at each iteration depending on two parameters g and x . Furthermore, some differentmethods are then created by utilizing different step-sizes of gradient algorithms which alreadyexist for finding the solution of symmetric problems.The effectiveness of the constructed algorithms, which depend on several parameters, have beenverified by various numerical experiments and comparisons with other approaches. The motivationfor choosing different gradient methods stems from the fact that simple examples can beconstructed in which each of these gradient methods will show superiority over the other. Mostof these algorithms have faster rates of convergence than CBB for non-symmetric matrices butslower for symmetric matrices.A new efficient gradient-based method to solve non-symmetric linear systems of equations ispresented. The simplicity of the new method, guaranteed convergent property, along with the miniiiimum memory requirement where it has almost the same number of gradient evaluations as theCBB method per iteration. This improved method is very attractive compared to alternative methodsfor solving slightly non-symmetric linear problems. Efficiency and feasibility of the presentedmethod are supported by numerical experiments." @default.
- W1539062885 created "2016-06-24" @default.
- W1539062885 creator A5081974773 @default.
- W1539062885 date "2013-01-01" @default.
- W1539062885 modified "2023-09-27" @default.
- W1539062885 title "Gradient optimization algorithms with fast convergence" @default.
- W1539062885 hasPublicationYear "2013" @default.
- W1539062885 type Work @default.
- W1539062885 sameAs 1539062885 @default.
- W1539062885 citedByCount "0" @default.
- W1539062885 crossrefType "dissertation" @default.
- W1539062885 hasAuthorship W1539062885A5081974773 @default.
- W1539062885 hasConcept C106487976 @default.
- W1539062885 hasConcept C11413529 @default.
- W1539062885 hasConcept C119857082 @default.
- W1539062885 hasConcept C121332964 @default.
- W1539062885 hasConcept C126255220 @default.
- W1539062885 hasConcept C127162648 @default.
- W1539062885 hasConcept C134306372 @default.
- W1539062885 hasConcept C153258448 @default.
- W1539062885 hasConcept C158693339 @default.
- W1539062885 hasConcept C158847443 @default.
- W1539062885 hasConcept C159985019 @default.
- W1539062885 hasConcept C162324750 @default.
- W1539062885 hasConcept C192562407 @default.
- W1539062885 hasConcept C203616005 @default.
- W1539062885 hasConcept C2777303404 @default.
- W1539062885 hasConcept C28826006 @default.
- W1539062885 hasConcept C31258907 @default.
- W1539062885 hasConcept C33923547 @default.
- W1539062885 hasConcept C41008148 @default.
- W1539062885 hasConcept C49344536 @default.
- W1539062885 hasConcept C49712288 @default.
- W1539062885 hasConcept C50522688 @default.
- W1539062885 hasConcept C50644808 @default.
- W1539062885 hasConcept C57869625 @default.
- W1539062885 hasConcept C62520636 @default.
- W1539062885 hasConceptScore W1539062885C106487976 @default.
- W1539062885 hasConceptScore W1539062885C11413529 @default.
- W1539062885 hasConceptScore W1539062885C119857082 @default.
- W1539062885 hasConceptScore W1539062885C121332964 @default.
- W1539062885 hasConceptScore W1539062885C126255220 @default.
- W1539062885 hasConceptScore W1539062885C127162648 @default.
- W1539062885 hasConceptScore W1539062885C134306372 @default.
- W1539062885 hasConceptScore W1539062885C153258448 @default.
- W1539062885 hasConceptScore W1539062885C158693339 @default.
- W1539062885 hasConceptScore W1539062885C158847443 @default.
- W1539062885 hasConceptScore W1539062885C159985019 @default.
- W1539062885 hasConceptScore W1539062885C162324750 @default.
- W1539062885 hasConceptScore W1539062885C192562407 @default.
- W1539062885 hasConceptScore W1539062885C203616005 @default.
- W1539062885 hasConceptScore W1539062885C2777303404 @default.
- W1539062885 hasConceptScore W1539062885C28826006 @default.
- W1539062885 hasConceptScore W1539062885C31258907 @default.
- W1539062885 hasConceptScore W1539062885C33923547 @default.
- W1539062885 hasConceptScore W1539062885C41008148 @default.
- W1539062885 hasConceptScore W1539062885C49344536 @default.
- W1539062885 hasConceptScore W1539062885C49712288 @default.
- W1539062885 hasConceptScore W1539062885C50522688 @default.
- W1539062885 hasConceptScore W1539062885C50644808 @default.
- W1539062885 hasConceptScore W1539062885C57869625 @default.
- W1539062885 hasConceptScore W1539062885C62520636 @default.
- W1539062885 hasLocation W15390628851 @default.
- W1539062885 hasOpenAccess W1539062885 @default.
- W1539062885 hasPrimaryLocation W15390628851 @default.
- W1539062885 hasRelatedWork W1557936609 @default.
- W1539062885 hasRelatedWork W1600618388 @default.
- W1539062885 hasRelatedWork W1995823823 @default.
- W1539062885 hasRelatedWork W1996869553 @default.
- W1539062885 hasRelatedWork W2017413072 @default.
- W1539062885 hasRelatedWork W2023870667 @default.
- W1539062885 hasRelatedWork W2035530669 @default.
- W1539062885 hasRelatedWork W2050896598 @default.
- W1539062885 hasRelatedWork W2066724685 @default.
- W1539062885 hasRelatedWork W2089251753 @default.
- W1539062885 hasRelatedWork W2110661390 @default.
- W1539062885 hasRelatedWork W2111682499 @default.
- W1539062885 hasRelatedWork W2259201661 @default.
- W1539062885 hasRelatedWork W2284250516 @default.
- W1539062885 hasRelatedWork W267794171 @default.
- W1539062885 hasRelatedWork W2784135336 @default.
- W1539062885 hasRelatedWork W3022184436 @default.
- W1539062885 hasRelatedWork W3027351043 @default.
- W1539062885 hasRelatedWork W75085145 @default.
- W1539062885 hasRelatedWork W2158684990 @default.
- W1539062885 isParatext "false" @default.
- W1539062885 isRetracted "false" @default.
- W1539062885 magId "1539062885" @default.
- W1539062885 workType "dissertation" @default.