Matches in SemOpenAlex for { <https://semopenalex.org/work/W1539245887> ?p ?o ?g. }
- W1539245887 abstract "The solution of least squares estimation problems is of great importance in the areas of numerical linear algebra, computational statistics and econometrics. The design and analysis of numerically stable and computationally efficient methods for solving such least squares problems is considered. The main computational tool used for the estimation of the least squares solutions is the QR decomposition, or the generalized QR decomposition. Specifically, emphasis is given to the design of sequential and parallel strategies for computing the main matrix factorizations which arise in the estimation procedures. The strategies are based on block-generalizations of the Givens sequences and efficiently exploit the structure of the matrices. An efficient minimum spanning tree algorithm is proposed for computing the QR decomposition of a set of matrices which have common columns. Heuristic strategies are also considered. Several computationally efficient sequential algorithms for block downdating of the least squares solutions are designed, implemented and analyzed. A parallel algorithm based on the best sequential approach for downdating the QR decomposition is also proposed. Within the context of block up-downdating, efficient serial and parallel algorithms for computing the estimators of the general linear and seemingly unrelated regression models after been updated with new observations are proposed. The algorithms are based on orthogonal factorizations and are rich in BLAS-3 computations. Experimental results which support the theoretical derived complexities of the new algorithms are presented. The comparison of the new algorithms with the corresponding LAPACK routines is also performed. The parallel algorithms utilize efficient load balanced distribution over the processors and are found to be scalable and efficient for large-scale least squares problems. It is expected that the proposed block-algorithms will facilitate the solution of computationally intensive statistical problems and the estimation of large scale linear models on serial and parallel computers." @default.
- W1539245887 created "2016-06-24" @default.
- W1539245887 creator A5019232478 @default.
- W1539245887 date "2005-01-01" @default.
- W1539245887 modified "2023-09-23" @default.
- W1539245887 title "Numerical algorithms for estimating least squares problems" @default.
- W1539245887 cites W1480928214 @default.
- W1539245887 cites W1561673690 @default.
- W1539245887 cites W1583784139 @default.
- W1539245887 cites W1965680834 @default.
- W1539245887 cites W1967281400 @default.
- W1539245887 cites W1977545325 @default.
- W1539245887 cites W1979005107 @default.
- W1539245887 cites W1983222003 @default.
- W1539245887 cites W1987788140 @default.
- W1539245887 cites W1987827901 @default.
- W1539245887 cites W1998741578 @default.
- W1539245887 cites W1999066908 @default.
- W1539245887 cites W2010315317 @default.
- W1539245887 cites W2010806348 @default.
- W1539245887 cites W2012114590 @default.
- W1539245887 cites W2016920816 @default.
- W1539245887 cites W2017927472 @default.
- W1539245887 cites W2031766448 @default.
- W1539245887 cites W2033872649 @default.
- W1539245887 cites W2035814233 @default.
- W1539245887 cites W2043193315 @default.
- W1539245887 cites W2052359800 @default.
- W1539245887 cites W2053534813 @default.
- W1539245887 cites W2057908972 @default.
- W1539245887 cites W2066734404 @default.
- W1539245887 cites W2068029249 @default.
- W1539245887 cites W2068516102 @default.
- W1539245887 cites W2074176259 @default.
- W1539245887 cites W2075665712 @default.
- W1539245887 cites W2077279546 @default.
- W1539245887 cites W2083574471 @default.
- W1539245887 cites W2086725962 @default.
- W1539245887 cites W2087363860 @default.
- W1539245887 cites W2094514178 @default.
- W1539245887 cites W2102212027 @default.
- W1539245887 cites W2125067246 @default.
- W1539245887 cites W2135941049 @default.
- W1539245887 cites W2140636994 @default.
- W1539245887 cites W2152591884 @default.
- W1539245887 cites W2167827911 @default.
- W1539245887 cites W2751086539 @default.
- W1539245887 cites W2798909945 @default.
- W1539245887 cites W596638555 @default.
- W1539245887 cites W1973075878 @default.
- W1539245887 cites W2041528605 @default.
- W1539245887 hasPublicationYear "2005" @default.
- W1539245887 type Work @default.
- W1539245887 sameAs 1539245887 @default.
- W1539245887 citedByCount "0" @default.
- W1539245887 crossrefType "journal-article" @default.
- W1539245887 hasAuthorship W1539245887A5019232478 @default.
- W1539245887 hasConcept C105795698 @default.
- W1539245887 hasConcept C11413529 @default.
- W1539245887 hasConcept C121332964 @default.
- W1539245887 hasConcept C126255220 @default.
- W1539245887 hasConcept C134306372 @default.
- W1539245887 hasConcept C139352143 @default.
- W1539245887 hasConcept C151730666 @default.
- W1539245887 hasConcept C158693339 @default.
- W1539245887 hasConcept C163834973 @default.
- W1539245887 hasConcept C185429906 @default.
- W1539245887 hasConcept C188060507 @default.
- W1539245887 hasConcept C2524010 @default.
- W1539245887 hasConcept C2777210771 @default.
- W1539245887 hasConcept C2779343474 @default.
- W1539245887 hasConcept C33923547 @default.
- W1539245887 hasConcept C41008148 @default.
- W1539245887 hasConcept C42355184 @default.
- W1539245887 hasConcept C62520636 @default.
- W1539245887 hasConcept C6802819 @default.
- W1539245887 hasConcept C86803240 @default.
- W1539245887 hasConcept C9936470 @default.
- W1539245887 hasConceptScore W1539245887C105795698 @default.
- W1539245887 hasConceptScore W1539245887C11413529 @default.
- W1539245887 hasConceptScore W1539245887C121332964 @default.
- W1539245887 hasConceptScore W1539245887C126255220 @default.
- W1539245887 hasConceptScore W1539245887C134306372 @default.
- W1539245887 hasConceptScore W1539245887C139352143 @default.
- W1539245887 hasConceptScore W1539245887C151730666 @default.
- W1539245887 hasConceptScore W1539245887C158693339 @default.
- W1539245887 hasConceptScore W1539245887C163834973 @default.
- W1539245887 hasConceptScore W1539245887C185429906 @default.
- W1539245887 hasConceptScore W1539245887C188060507 @default.
- W1539245887 hasConceptScore W1539245887C2524010 @default.
- W1539245887 hasConceptScore W1539245887C2777210771 @default.
- W1539245887 hasConceptScore W1539245887C2779343474 @default.
- W1539245887 hasConceptScore W1539245887C33923547 @default.
- W1539245887 hasConceptScore W1539245887C41008148 @default.
- W1539245887 hasConceptScore W1539245887C42355184 @default.
- W1539245887 hasConceptScore W1539245887C62520636 @default.
- W1539245887 hasConceptScore W1539245887C6802819 @default.
- W1539245887 hasConceptScore W1539245887C86803240 @default.
- W1539245887 hasConceptScore W1539245887C9936470 @default.
- W1539245887 hasLocation W15392458871 @default.