Matches in SemOpenAlex for { <https://semopenalex.org/work/W1539762487> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W1539762487 abstract "This laboratory-scale investigation is focused on decreasing mobility of uranium in subsurface contaminated sediments in the vadose zone by in situ geochemical manipulation at low water content. This geochemical manipulation of the sediment surface phases included reduction, pH change (acidic and alkaline), and additions of chemicals (phosphate, ferric iron) to form specific precipitates. Reactants were advected into 1-D columns packed with Hanford 200 area U-contaminated sediment as a reactive gas (for CO2, NH3, H2S, SO2), with a 0.1% water content mist (for NaOH, Fe(III), HCl, PO4) and with a 1% water content foam (for PO4). Uranium is present in the sediment in multiple phases that include (in decreasing mobility): aqueous U(VI) complexes, adsorbed U, reduced U(IV) precipitates, rind-carbonates, total carbonates, oxides, silicates, phosphates, and in vanadate minerals. Geochemical changes were evaluated in the ability to change the mixture of surface U phases to less mobile forms, as defined by a series of liquid extractions that dissolve progressively less soluble phases. Although liquid extractions provide some useful information as to the generalized uranium surface phases (and are considered operational definitions of extracted phases), positive identification (by x-ray diffraction, electron microprobe, other techniques) was also used to positively identify U phases and effects of treatment. Some of the changes in U mobility directly involve U phases, whereas other changes result in precipitate coatings on U surface phases. The long-term implication of the U surface phase changes to alter U mass mobility in the vadose zone was then investigated using simulations of 1-D infiltration and downward migration of six U phases to the water table. In terms of the short-term decrease in U mobility (in decreasing order), NH3, NaOH mist, CO2, HCl mist, and Fe(III) mist showed 20% to 35% change in U surface phases. Phosphate addition (mist or foam advected) showed inconsistent change in aqueous and adsorbed U, but significant coating (likely phosphates) on U-carbonates. The two reductive gas treatments (H2S and SO2) showed little change. For long-term decrease in U reduction, mineral phases created that had low solubility (phosphates, silicates) were desired, so NH3, phosphates (mist and foam delivered), and NaOH mist showed the greatest formation of these minerals. In addition, simulations showed the greatest decrease in U mass transport time to reach groundwater (and concentration) for these silicate/phosphate minerals. Advection of reactive gasses was the easiest to implement at the laboratory scale (and presumably field scale). Both mist and foam advection show promise and need further development, but current implementation move reactants shorter distances relative to reactive gasses. Overall, the ammonia and carbon dioxide gas had the greatest overall geochemical performance and ability to implement at field scale. Corresponding mist-delivered technologies (NaOH mist for ammonia and HCl mist for carbon dioxide) performed as well or better geochemically, but are not as easily upscaled. Phosphate delivery by mist was rated slightly higher than by foam delivery simply due to the complexity of foam injection and unknown effect of U mobility by the presence of the surfactant." @default.
- W1539762487 created "2016-06-24" @default.
- W1539762487 creator A5001322240 @default.
- W1539762487 creator A5002905835 @default.
- W1539762487 creator A5037864366 @default.
- W1539762487 creator A5073062396 @default.
- W1539762487 creator A5085827722 @default.
- W1539762487 creator A5088865799 @default.
- W1539762487 date "2010-01-04" @default.
- W1539762487 modified "2023-09-23" @default.
- W1539762487 title "Remediation of Uranium in the Hanford Vadose Zone Using Gas-Transported Reactants: Laboratory Scale Experiments in Support of the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau" @default.
- W1539762487 cites W1589933704 @default.
- W1539762487 cites W1606864155 @default.
- W1539762487 cites W1676210171 @default.
- W1539762487 cites W1969328009 @default.
- W1539762487 cites W1990441422 @default.
- W1539762487 cites W2041275341 @default.
- W1539762487 cites W2043596220 @default.
- W1539762487 cites W2295167534 @default.
- W1539762487 cites W2295739229 @default.
- W1539762487 cites W2522976237 @default.
- W1539762487 doi "https://doi.org/10.2172/973415" @default.
- W1539762487 hasPublicationYear "2010" @default.
- W1539762487 type Work @default.
- W1539762487 sameAs 1539762487 @default.
- W1539762487 citedByCount "3" @default.
- W1539762487 countsByYear W15397624872012 @default.
- W1539762487 countsByYear W15397624872021 @default.
- W1539762487 crossrefType "report" @default.
- W1539762487 hasAuthorship W1539762487A5001322240 @default.
- W1539762487 hasAuthorship W1539762487A5002905835 @default.
- W1539762487 hasAuthorship W1539762487A5037864366 @default.
- W1539762487 hasAuthorship W1539762487A5073062396 @default.
- W1539762487 hasAuthorship W1539762487A5085827722 @default.
- W1539762487 hasAuthorship W1539762487A5088865799 @default.
- W1539762487 hasBestOaLocation W15397624873 @default.
- W1539762487 hasConcept C112570922 @default.
- W1539762487 hasConcept C127313418 @default.
- W1539762487 hasConcept C127413603 @default.
- W1539762487 hasConcept C151730666 @default.
- W1539762487 hasConcept C187320778 @default.
- W1539762487 hasConcept C18903297 @default.
- W1539762487 hasConcept C2776505523 @default.
- W1539762487 hasConcept C2778192726 @default.
- W1539762487 hasConcept C35588792 @default.
- W1539762487 hasConcept C39432304 @default.
- W1539762487 hasConcept C522964758 @default.
- W1539762487 hasConcept C548081761 @default.
- W1539762487 hasConcept C76177295 @default.
- W1539762487 hasConcept C86803240 @default.
- W1539762487 hasConcept C89690796 @default.
- W1539762487 hasConceptScore W1539762487C112570922 @default.
- W1539762487 hasConceptScore W1539762487C127313418 @default.
- W1539762487 hasConceptScore W1539762487C127413603 @default.
- W1539762487 hasConceptScore W1539762487C151730666 @default.
- W1539762487 hasConceptScore W1539762487C187320778 @default.
- W1539762487 hasConceptScore W1539762487C18903297 @default.
- W1539762487 hasConceptScore W1539762487C2776505523 @default.
- W1539762487 hasConceptScore W1539762487C2778192726 @default.
- W1539762487 hasConceptScore W1539762487C35588792 @default.
- W1539762487 hasConceptScore W1539762487C39432304 @default.
- W1539762487 hasConceptScore W1539762487C522964758 @default.
- W1539762487 hasConceptScore W1539762487C548081761 @default.
- W1539762487 hasConceptScore W1539762487C76177295 @default.
- W1539762487 hasConceptScore W1539762487C86803240 @default.
- W1539762487 hasConceptScore W1539762487C89690796 @default.
- W1539762487 hasLocation W15397624871 @default.
- W1539762487 hasLocation W15397624872 @default.
- W1539762487 hasLocation W15397624873 @default.
- W1539762487 hasOpenAccess W1539762487 @default.
- W1539762487 hasPrimaryLocation W15397624871 @default.
- W1539762487 hasRelatedWork W1496853152 @default.
- W1539762487 hasRelatedWork W1589773044 @default.
- W1539762487 hasRelatedWork W1594181924 @default.
- W1539762487 hasRelatedWork W1597036283 @default.
- W1539762487 hasRelatedWork W1981538910 @default.
- W1539762487 hasRelatedWork W2022329404 @default.
- W1539762487 hasRelatedWork W2208375984 @default.
- W1539762487 hasRelatedWork W563740473 @default.
- W1539762487 hasRelatedWork W64380464 @default.
- W1539762487 hasRelatedWork W1966780829 @default.
- W1539762487 isParatext "false" @default.
- W1539762487 isRetracted "false" @default.
- W1539762487 magId "1539762487" @default.
- W1539762487 workType "report" @default.