Matches in SemOpenAlex for { <https://semopenalex.org/work/W153988002> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W153988002 abstract "The acoustic signal of cavitation bubbles can be characterized during inception, growth, and collapse. Growing and collapsing bubbles produced a sharp, broadband, popping sound. However, some elongated cavitation bubbles produced a short tone burst, or chirp, with frequencies on the order of 1 to 6 kHz. The frequency content of the acoustic signal during bubble inception and growth were related to the volumetric oscillations of the bubble and vortex dynamics coupling. A relationship was also found between the frequency of the oscillations and the flow and water quality conditions. INTRODUCTION The static pressure in the core of a linear vortex is depressed when compared with the pressure far from the vortex, and this pressure drop is increased if the vortex is stretched along its axis. In some cases, the pressure in the vortex core can fall below the liquid vapour pressure, resulting in a negative cavitation number. This can then lead to vortex cavitation if a small bubble or nucleus is present in this area of low pressure. Vortex cavitation bubbles may remain small compared with the vortex core radius, with the nearly spherical bubbles rapidly growing and collapsing within the vortex core. Or, when the bubble is exposed to a prolonged period of low pressure, the near spherical bubble can expand to fill the core of the vortex and then continue to grow along the vortex axis, becoming highly elongated. The growth, splitting, and collapse of vortex cavitation bubbles can produce a variety of acoustic emissions which can relate in complicated ways to the underlying vortical flow, the nature of the nucleus, and the possible presence of a time-varying pressure field in the far field (Chahine 1995; Choi & Chahine 2004; Choi, Hsiao, & Chahine 2004; Choi & Ceccio 2007; Choi, Hsiao, Chahine, & Ceccio 2009). Concentrated regions of vorticity often occur in the tip regions of lifting surfaces immersed in liquid, and they are also associated with the flows within turbo-machinery and with turbulent jets, wakes, and shear layers. These are unsteady flows where vortex cavitation typically takes place before the onset of other forms of cavitation, such as, sheet cavitation or cloud cavitation. A review of this subject is provided by Arndt (2002). There are many instances in these unsteady flows where weaker or secondary vortices incept before the strongest vortices (i.e. the vortices with the highest circulation) in the flow. This is due to a variety of vortex-vortex interactions occurring between both coand counter-rotating vortices of varying strength that can lead to stretching of smaller and weaker vortex filaments. These secondary vortices can produce cavitation at relatively high pressures due to both vortex stretching and axial flow acceleration in the vortex core. In the case of shear layers, the streamwise vortices can be an order of magnitude weaker than span wise vortices, but due to vortex interaction, the streamwise vortices will be stretched by the spanwise vortices and have been observed to cavitate well before the stronger spanwise vortices. The resulting cavitation inception location can occur at random sites throughout the shear layer (Katz & O’Hern 1986; O’Hern 1990; Golapan, Katz, & Knio 1999; Iyer & Ceccio 2002 Similarly, a recent study of a ducted rotor propulsor at the U. S. Navy’s Naval Surface Warfare Center Carderock Division (Chesnakas & Jessup 2003; Oweis, Fry, Chesnakas, Jessup & Ceccio 2006a and 2006b) show that the location and inception pressure of the cavitation was associated with the presence of multiple, interacting vortices. Moreover, Chesnakas & Jessup (2003) found that, depending on the static pressure surrounding the propulsor, the acoustic signal of the cavitation bubble was quite varied. As the static pressure was lowered from a condition of no cavitation, the initial bubble acoustic signatures resemble a “pop”, a sharp broadband peak. As the pressure was further lowered the bubble signature took the form of a “chirp.” An acoustic chirp was much longer in duration than a pop, and it contained a well-defined tone when compared to the broadband pop. The measured tone of a chirp was between 2 kHz to 6 kHz in frequency. Vortex cavitation inception resulting in a well defined tone of frequencies lower than the resonant frequency of the bubble has been predicted analytically and numerically for cavitation bubbles in a line vortex by Choi et al (2009). In this study the interactions between a single cylindrical bubble in the core of a line vortex and the surrounding vortical flow were computed, including the redistribution of the vorticity surrounding the bubble due to the volume changes of the bubble. It was found that bubbles could undergo radial oscillation, during bubble growth and collapse. These radial oscillations would take place" @default.
- W153988002 created "2016-06-24" @default.
- W153988002 creator A5014827724 @default.
- W153988002 creator A5062323268 @default.
- W153988002 date "2009-08-01" @default.
- W153988002 modified "2023-09-27" @default.
- W153988002 title "Incepting cavitation acoustic emissions due to vortex stretching" @default.
- W153988002 cites W1835935525 @default.
- W153988002 cites W2009335869 @default.
- W153988002 cites W2017686793 @default.
- W153988002 cites W201978170 @default.
- W153988002 cites W2027870984 @default.
- W153988002 cites W2033479639 @default.
- W153988002 cites W2050688734 @default.
- W153988002 cites W2075078048 @default.
- W153988002 cites W2077196362 @default.
- W153988002 cites W2088978553 @default.
- W153988002 cites W2091029801 @default.
- W153988002 cites W2101038889 @default.
- W153988002 cites W2109175029 @default.
- W153988002 cites W2120882509 @default.
- W153988002 cites W2136195747 @default.
- W153988002 cites W2141169372 @default.
- W153988002 cites W2314715830 @default.
- W153988002 hasPublicationYear "2009" @default.
- W153988002 type Work @default.
- W153988002 sameAs 153988002 @default.
- W153988002 citedByCount "0" @default.
- W153988002 crossrefType "journal-article" @default.
- W153988002 hasAuthorship W153988002A5014827724 @default.
- W153988002 hasAuthorship W153988002A5062323268 @default.
- W153988002 hasConcept C121332964 @default.
- W153988002 hasConcept C127413603 @default.
- W153988002 hasConcept C140820882 @default.
- W153988002 hasConcept C157915830 @default.
- W153988002 hasConcept C168475990 @default.
- W153988002 hasConcept C178635117 @default.
- W153988002 hasConcept C192562407 @default.
- W153988002 hasConcept C207057113 @default.
- W153988002 hasConcept C24890656 @default.
- W153988002 hasConcept C2781345722 @default.
- W153988002 hasConcept C38652104 @default.
- W153988002 hasConcept C41008148 @default.
- W153988002 hasConcept C57879066 @default.
- W153988002 hasConcept C68115822 @default.
- W153988002 hasConcept C78519656 @default.
- W153988002 hasConceptScore W153988002C121332964 @default.
- W153988002 hasConceptScore W153988002C127413603 @default.
- W153988002 hasConceptScore W153988002C140820882 @default.
- W153988002 hasConceptScore W153988002C157915830 @default.
- W153988002 hasConceptScore W153988002C168475990 @default.
- W153988002 hasConceptScore W153988002C178635117 @default.
- W153988002 hasConceptScore W153988002C192562407 @default.
- W153988002 hasConceptScore W153988002C207057113 @default.
- W153988002 hasConceptScore W153988002C24890656 @default.
- W153988002 hasConceptScore W153988002C2781345722 @default.
- W153988002 hasConceptScore W153988002C38652104 @default.
- W153988002 hasConceptScore W153988002C41008148 @default.
- W153988002 hasConceptScore W153988002C57879066 @default.
- W153988002 hasConceptScore W153988002C68115822 @default.
- W153988002 hasConceptScore W153988002C78519656 @default.
- W153988002 hasLocation W1539880021 @default.
- W153988002 hasOpenAccess W153988002 @default.
- W153988002 hasPrimaryLocation W1539880021 @default.
- W153988002 hasRelatedWork W1646153375 @default.
- W153988002 hasRelatedWork W176243384 @default.
- W153988002 hasRelatedWork W1919015647 @default.
- W153988002 hasRelatedWork W1986511758 @default.
- W153988002 hasRelatedWork W2053121150 @default.
- W153988002 hasRelatedWork W2066515704 @default.
- W153988002 hasRelatedWork W2066718618 @default.
- W153988002 hasRelatedWork W2085270231 @default.
- W153988002 hasRelatedWork W2153023799 @default.
- W153988002 hasRelatedWork W2247933096 @default.
- W153988002 hasRelatedWork W2316418483 @default.
- W153988002 hasRelatedWork W2349833991 @default.
- W153988002 hasRelatedWork W2586780631 @default.
- W153988002 hasRelatedWork W2754497110 @default.
- W153988002 hasRelatedWork W2800014409 @default.
- W153988002 hasRelatedWork W2951365777 @default.
- W153988002 hasRelatedWork W3177030067 @default.
- W153988002 hasRelatedWork W3201093875 @default.
- W153988002 hasRelatedWork W399620244 @default.
- W153988002 hasRelatedWork W42046740 @default.
- W153988002 isParatext "false" @default.
- W153988002 isRetracted "false" @default.
- W153988002 magId "153988002" @default.
- W153988002 workType "article" @default.