Matches in SemOpenAlex for { <https://semopenalex.org/work/W1541388797> ?p ?o ?g. }
- W1541388797 abstract "Short-distance digital communication links, between chips on a circuit board, or between different circuit boards for example, have traditionally been built by using electrical interconnects -- metallic tracks and wires. Recent technological advances have resulted in improvements in the speed of information processing, but have left electrical interconnects intact, thus creating a serious communication problem. Free-space optical interconnects, made up of arrays of vertical-cavity surface-emitting lasers, microlenses, and photodetectors, could be used to solve this problem. If free-space optical interconnects are to successfully replace electrical interconnects, they have to be able to support large rates of information transfer with high channel densities. The biggest obstacle in the way of reaching these requirements is laser beam diffraction. There are three approaches commonly used to model the effects of laser beam diffraction in optical interconnects: one could pursue the path of solving the diffraction integral directly, one could apply stronger approximations with some loss of accuracy of the results, or one could cleverly reinterpret the diffraction problem altogether. None of the representatives of the three categories of existing solutions qualified for our purposes. The main contribution of this dissertation consist of, first, formulating the mode expansion method, and, second, showing that it outperforms all other methods previously used for modelling diffraction in optical interconnects. The mode expansion method allows us to obtain the optical field produced by the diffraction of arbitrary laser beams at empty apertures, phase-shifting optical elements, or any combinations thereof, regardless of the size, shape, position, or any other parameters either of the incident optical field or the observation plane. The mode expansion method enables us to perform all this without any reference or use of the traditional Huygens-Kirchhoff-Fresnel diffraction integrals. When using the mode expansion method, one replaces the incident optical field and the diffracting optical element by an effective beam, possibly containing higher-order transverse modes, so that the ultimate effects of diffraction are equivalently expressed through the complex-valued modal weights. By using the mode expansion method, one represents both the incident and the resultant optical fields in terms of an orthogonal set of functions, and finds the unknown parameters from the condition that the two fields have to be matched at each surface on their propagation paths. Even though essentially a numerical process, the mode expansion method can produce very accurate effective representations of the diffraction fields quickly and efficiently, usually by using no more than about a dozen expanding modes. The second tier of contributions contained in this dissertation is on the subject of the analysis and design of microchannel free-space optical interconnects. In addition to the proper characterisation of the design model, we have formulated several optical interconnect performance parameters, most notably the signal-to-noise ratio, optical carrier-to-noise ratio, and the space-bandwidth product, in a thorough and insightful way that has not been published previously. The proper calculation of those performance parameters, made possible by the mode expansion method, was then performed by using experimentally-measured fields of the incident vertical-cavity surface-emitting laser beams. After illustrating the importance of the proper way of modelling diffraction in optical interconnects, we have shown how to improve the optical interconnect performance by changing either the interconnect optical design, or by careful selection of the design parameter values. We have also suggested a change from the usual `square' to a novel `hexagonal' packing of the optical interconnect channels, in order to alleviate the negative diffraction effects. Finally, the optical interconnect tolerance to lateral misalignment, in the presence of multimodal incident laser beams was studied for the first time, and it was shown to be acceptable only as long as most of the incident optical power is emitted in the fundamental Gaussian mode." @default.
- W1541388797 created "2016-06-24" @default.
- W1541388797 creator A5054589987 @default.
- W1541388797 date "2004-12-01" @default.
- W1541388797 modified "2023-09-26" @default.
- W1541388797 title "Modelling Diffraction in Optical Interconnects" @default.
- W1541388797 cites W1509206633 @default.
- W1541388797 cites W1529436735 @default.
- W1541388797 cites W1552736770 @default.
- W1541388797 cites W1564872880 @default.
- W1541388797 cites W1596764140 @default.
- W1541388797 cites W1629977703 @default.
- W1541388797 cites W1658472922 @default.
- W1541388797 cites W1966417771 @default.
- W1541388797 cites W1970055286 @default.
- W1541388797 cites W1972114212 @default.
- W1541388797 cites W1973517494 @default.
- W1541388797 cites W1976035896 @default.
- W1541388797 cites W1977283670 @default.
- W1541388797 cites W1978718792 @default.
- W1541388797 cites W1979272447 @default.
- W1541388797 cites W1979543587 @default.
- W1541388797 cites W1983882310 @default.
- W1541388797 cites W1985144933 @default.
- W1541388797 cites W1987736211 @default.
- W1541388797 cites W1997601588 @default.
- W1541388797 cites W2003763687 @default.
- W1541388797 cites W2004600851 @default.
- W1541388797 cites W2005588994 @default.
- W1541388797 cites W2007866359 @default.
- W1541388797 cites W2010896246 @default.
- W1541388797 cites W2015793783 @default.
- W1541388797 cites W2016416150 @default.
- W1541388797 cites W2016523873 @default.
- W1541388797 cites W2019606075 @default.
- W1541388797 cites W2019734872 @default.
- W1541388797 cites W2021013250 @default.
- W1541388797 cites W2021262289 @default.
- W1541388797 cites W2021396597 @default.
- W1541388797 cites W2025969737 @default.
- W1541388797 cites W2029341122 @default.
- W1541388797 cites W2029755194 @default.
- W1541388797 cites W2029830658 @default.
- W1541388797 cites W2030609992 @default.
- W1541388797 cites W2030672889 @default.
- W1541388797 cites W2031690997 @default.
- W1541388797 cites W2032378667 @default.
- W1541388797 cites W2034135805 @default.
- W1541388797 cites W2036257558 @default.
- W1541388797 cites W2038145641 @default.
- W1541388797 cites W2040703026 @default.
- W1541388797 cites W2041651135 @default.
- W1541388797 cites W2042762955 @default.
- W1541388797 cites W2044265961 @default.
- W1541388797 cites W2045502846 @default.
- W1541388797 cites W2047049044 @default.
- W1541388797 cites W2047534274 @default.
- W1541388797 cites W2049214535 @default.
- W1541388797 cites W2049244249 @default.
- W1541388797 cites W2051615818 @default.
- W1541388797 cites W2053363974 @default.
- W1541388797 cites W2053509922 @default.
- W1541388797 cites W2055447049 @default.
- W1541388797 cites W2056545112 @default.
- W1541388797 cites W2058283856 @default.
- W1541388797 cites W2059070715 @default.
- W1541388797 cites W2060360929 @default.
- W1541388797 cites W2060601032 @default.
- W1541388797 cites W2060807102 @default.
- W1541388797 cites W2064940352 @default.
- W1541388797 cites W2065337145 @default.
- W1541388797 cites W2066774303 @default.
- W1541388797 cites W2076479840 @default.
- W1541388797 cites W2087686981 @default.
- W1541388797 cites W2090190533 @default.
- W1541388797 cites W2090857238 @default.
- W1541388797 cites W2092852031 @default.
- W1541388797 cites W2095390884 @default.
- W1541388797 cites W2096598573 @default.
- W1541388797 cites W2098682104 @default.
- W1541388797 cites W2102271847 @default.
- W1541388797 cites W2102969184 @default.
- W1541388797 cites W2102987676 @default.
- W1541388797 cites W2103845095 @default.
- W1541388797 cites W2104526670 @default.
- W1541388797 cites W2105396769 @default.
- W1541388797 cites W2105409701 @default.
- W1541388797 cites W2105782253 @default.
- W1541388797 cites W2107563475 @default.
- W1541388797 cites W2108395961 @default.
- W1541388797 cites W2110456128 @default.
- W1541388797 cites W2111655361 @default.
- W1541388797 cites W2116386050 @default.
- W1541388797 cites W2118065334 @default.
- W1541388797 cites W2119302555 @default.
- W1541388797 cites W2120405642 @default.
- W1541388797 cites W2122006201 @default.
- W1541388797 cites W2122319780 @default.
- W1541388797 cites W2123204311 @default.
- W1541388797 cites W2123563901 @default.