Matches in SemOpenAlex for { <https://semopenalex.org/work/W1541805501> ?p ?o ?g. }
- W1541805501 endingPage "576" @default.
- W1541805501 startingPage "566" @default.
- W1541805501 abstract "Chemical imaging was used in this study as a powerful analytical tool to characterize pharmaceuticals in solid form. The majority of analyses are evaluated with bilinear modelling using only the pure component spectra or just the chemical images themselves to estimate the concentrations in each pixel, which are far from true quantitative determination. Our aim was to create more accurate concentration images using regression methods. For the first time in chemical imaging, variable selections with interval partial least squares (PLS) and with genetic algorithms (PLS-GA) were applied to increase the efficiency of the models. These were compared to numerous bilinear modelling and multivariate linear regression methods such as univariate regression, classical least squares (CLS), multivariate curve resolution–alternating least squares (MCR-ALS), principal component regression (PCR) and partial least squares (PLS). Two component spray-dried pharmaceuticals were used as a model. The paper is shown that, in contrast to the usual way of using either external validation or cross-validation, both should be performed simultaneously in order to get a clear picture of the prediction errors and to be able to select the appropriate models. Using PLS with variable selection, the root mean square errors were reduced to 3% per pixel by keeping only those peaks that are truly necessary for the estimation of concentrations. It is also shown that interval PLS can point out the best peak for univariate regression, and can thereby be of great help even when regulations allow only univariate models for product quality testing. Variable selection, besides yielding more accurate overall concentrations across a Raman map, also reduces the deviation among pixel concentrations within the images, thereby increasing the sensitivity of homogeneity studies. Copyright © 2015 John Wiley & Sons, Ltd." @default.
- W1541805501 created "2016-06-24" @default.
- W1541805501 creator A5005928466 @default.
- W1541805501 creator A5053450304 @default.
- W1541805501 creator A5057036697 @default.
- W1541805501 creator A5064823224 @default.
- W1541805501 creator A5074424335 @default.
- W1541805501 creator A5087450319 @default.
- W1541805501 creator A5091353806 @default.
- W1541805501 date "2015-03-22" @default.
- W1541805501 modified "2023-09-27" @default.
- W1541805501 title "Comparison of multivariate linear regression methods in micro-Raman spectrometric quantitative characterization" @default.
- W1541805501 cites W1482818487 @default.
- W1541805501 cites W1598445354 @default.
- W1541805501 cites W1667883668 @default.
- W1541805501 cites W1898416820 @default.
- W1541805501 cites W1952603370 @default.
- W1541805501 cites W1964023798 @default.
- W1541805501 cites W1965106402 @default.
- W1541805501 cites W1966822981 @default.
- W1541805501 cites W1967730787 @default.
- W1541805501 cites W1970599354 @default.
- W1541805501 cites W1978819209 @default.
- W1541805501 cites W1980612037 @default.
- W1541805501 cites W1984340379 @default.
- W1541805501 cites W1984417739 @default.
- W1541805501 cites W1985311597 @default.
- W1541805501 cites W1986931688 @default.
- W1541805501 cites W1989441983 @default.
- W1541805501 cites W1992479521 @default.
- W1541805501 cites W1995857351 @default.
- W1541805501 cites W2000210540 @default.
- W1541805501 cites W2001179019 @default.
- W1541805501 cites W2003573774 @default.
- W1541805501 cites W2005678162 @default.
- W1541805501 cites W2009352504 @default.
- W1541805501 cites W2009549197 @default.
- W1541805501 cites W2016372905 @default.
- W1541805501 cites W2018512902 @default.
- W1541805501 cites W2021754455 @default.
- W1541805501 cites W2024349178 @default.
- W1541805501 cites W2025468715 @default.
- W1541805501 cites W2032143007 @default.
- W1541805501 cites W2037226761 @default.
- W1541805501 cites W2038925318 @default.
- W1541805501 cites W2039499240 @default.
- W1541805501 cites W2043381570 @default.
- W1541805501 cites W2045481845 @default.
- W1541805501 cites W2051986339 @default.
- W1541805501 cites W2052031193 @default.
- W1541805501 cites W2052609849 @default.
- W1541805501 cites W2056017607 @default.
- W1541805501 cites W2059593074 @default.
- W1541805501 cites W2063034225 @default.
- W1541805501 cites W2063990511 @default.
- W1541805501 cites W2066214560 @default.
- W1541805501 cites W2076324647 @default.
- W1541805501 cites W2081026009 @default.
- W1541805501 cites W2084559921 @default.
- W1541805501 cites W2084850750 @default.
- W1541805501 cites W2091051774 @default.
- W1541805501 cites W2091775441 @default.
- W1541805501 cites W2093493427 @default.
- W1541805501 cites W2107944544 @default.
- W1541805501 cites W2134994325 @default.
- W1541805501 cites W2152437359 @default.
- W1541805501 cites W2153243697 @default.
- W1541805501 cites W2158863190 @default.
- W1541805501 cites W2170796849 @default.
- W1541805501 cites W2171222898 @default.
- W1541805501 cites W2331073067 @default.
- W1541805501 cites W4300565850 @default.
- W1541805501 doi "https://doi.org/10.1002/jrs.4672" @default.
- W1541805501 hasPublicationYear "2015" @default.
- W1541805501 type Work @default.
- W1541805501 sameAs 1541805501 @default.
- W1541805501 citedByCount "19" @default.
- W1541805501 countsByYear W15418055012015 @default.
- W1541805501 countsByYear W15418055012016 @default.
- W1541805501 countsByYear W15418055012017 @default.
- W1541805501 countsByYear W15418055012018 @default.
- W1541805501 countsByYear W15418055012019 @default.
- W1541805501 countsByYear W15418055012020 @default.
- W1541805501 countsByYear W15418055012021 @default.
- W1541805501 countsByYear W15418055012022 @default.
- W1541805501 crossrefType "journal-article" @default.
- W1541805501 hasAuthorship W1541805501A5005928466 @default.
- W1541805501 hasAuthorship W1541805501A5053450304 @default.
- W1541805501 hasAuthorship W1541805501A5057036697 @default.
- W1541805501 hasAuthorship W1541805501A5064823224 @default.
- W1541805501 hasAuthorship W1541805501A5074424335 @default.
- W1541805501 hasAuthorship W1541805501A5087450319 @default.
- W1541805501 hasAuthorship W1541805501A5091353806 @default.
- W1541805501 hasConcept C105795698 @default.
- W1541805501 hasConcept C152877465 @default.
- W1541805501 hasConcept C161584116 @default.
- W1541805501 hasConcept C199163554 @default.
- W1541805501 hasConcept C205203396 @default.