Matches in SemOpenAlex for { <https://semopenalex.org/work/W1542333043> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W1542333043 abstract "In this thesis, the integration of two Artificial Intelligence paradigms, Case-Based Reasoning and Artificial Neural Networks, is studied. The research is performed in two dififerent directions. First, the study of applying the Case-Based Reasoning methodology to the problem of choosing and configuring an Artificial Neural Network model. In second place, the feasibility of introducing an Artificial Neural Network inside of a case-based system working cycle. The solutions to the problem of choosing and configuring an Artificial Neural Network model have a strong empirical component. There is no available formalized knowledge that provides substance for an unified implementation process of those systems, known as connectionist. The solution quality depends upon the designer skill in adjusting a set of several related parameters. The Case-Based Reasoning methodology has its fundaments on the idea that an efficient expert is not a rule processor, but a collector of practical experiences, well succeeded or not. So, the methodology becomes very sound to be applied to domains where the knowledge is more difluse and it is difficult to make it explicit. From those observations, it is proposed the problem representation as a typical design task and it is established a strategy to apply the methodology in its solution. In the other direction, the choice of the best solution, inside the Case-Based Reasoning methodology, depends upon the existence of good processes that allow the transformation of a former solution into an adequate solution to the present problem. Those processes can take profit, as is shown along the work, of a good generalization capacity of the acquired knowledge. In most of the actual systems, those transformations, or adaptations, are accomplished by production rales. Those rules also demand a high degree of knowledge acquisition in domains not always well structured. Artificial Neural Networks have as a strong characteristic the ability of learning from examples, extract intrinsic features from datasets and to generalize this acquired knowledge. This ability gives them credentials to be good options in substituting rule based systems. What could be considered a weak characteristic of the Neural Networks, its leak of justifications to make its associations or predictions, does not constitute a barrier to its introduction in this specific point of the Case-Based Reasoning cycle. Based on those premises, this work suggests a neurosymbolic hybrid approach as a mechanism of retrieving and adapting cases inside this cycle. In order to provide a testing tool, it was also created a Case-Based Reasoning development environment." @default.
- W1542333043 created "2016-06-24" @default.
- W1542333043 creator A5032715663 @default.
- W1542333043 date "2016-02-25" @default.
- W1542333043 modified "2023-09-24" @default.
- W1542333043 title "Uma abordagem híbrida baseada em casos e redes neurais. Uma aplicação: escolha e configuração de modelos de redes neurais" @default.
- W1542333043 cites W103212339 @default.
- W1542333043 cites W140658878 @default.
- W1542333043 cites W1489118070 @default.
- W1542333043 cites W1500151553 @default.
- W1542333043 cites W1509235435 @default.
- W1542333043 cites W1511654687 @default.
- W1542333043 cites W1525136198 @default.
- W1542333043 cites W1531965068 @default.
- W1542333043 cites W1539686131 @default.
- W1542333043 cites W1543177305 @default.
- W1542333043 cites W1546836008 @default.
- W1542333043 cites W1552383265 @default.
- W1542333043 cites W1563716826 @default.
- W1542333043 cites W1576278180 @default.
- W1542333043 cites W1592033656 @default.
- W1542333043 cites W1593326346 @default.
- W1542333043 cites W1597969161 @default.
- W1542333043 cites W1610836425 @default.
- W1542333043 cites W1631448620 @default.
- W1542333043 cites W164403783 @default.
- W1542333043 cites W1828251618 @default.
- W1542333043 cites W1895754424 @default.
- W1542333043 cites W1991848143 @default.
- W1542333043 cites W1992250294 @default.
- W1542333043 cites W2058807970 @default.
- W1542333043 cites W2066491285 @default.
- W1542333043 cites W2091251778 @default.
- W1542333043 cites W2095425517 @default.
- W1542333043 cites W2097180914 @default.
- W1542333043 cites W2099435902 @default.
- W1542333043 cites W2101724762 @default.
- W1542333043 cites W2121292733 @default.
- W1542333043 cites W2124776405 @default.
- W1542333043 cites W2126385963 @default.
- W1542333043 cites W2131302731 @default.
- W1542333043 cites W2157384740 @default.
- W1542333043 cites W2164821667 @default.
- W1542333043 cites W2171553064 @default.
- W1542333043 cites W2175720181 @default.
- W1542333043 cites W22297218 @default.
- W1542333043 cites W2794625239 @default.
- W1542333043 cites W3126115357 @default.
- W1542333043 cites W3127320407 @default.
- W1542333043 cites W32412970 @default.
- W1542333043 cites W63136145 @default.
- W1542333043 cites W968297808 @default.
- W1542333043 cites W2152477898 @default.
- W1542333043 doi "https://doi.org/10.11606/t.55.2002.tde-05122014-085323" @default.
- W1542333043 hasPublicationYear "2016" @default.
- W1542333043 type Work @default.
- W1542333043 sameAs 1542333043 @default.
- W1542333043 citedByCount "0" @default.
- W1542333043 crossrefType "dissertation" @default.
- W1542333043 hasAuthorship W1542333043A5032715663 @default.
- W1542333043 hasBestOaLocation W15423330431 @default.
- W1542333043 hasConcept C111919701 @default.
- W1542333043 hasConcept C154945302 @default.
- W1542333043 hasConcept C177264268 @default.
- W1542333043 hasConcept C17744445 @default.
- W1542333043 hasConcept C199360897 @default.
- W1542333043 hasConcept C199539241 @default.
- W1542333043 hasConcept C2776359362 @default.
- W1542333043 hasConcept C41008148 @default.
- W1542333043 hasConcept C50644808 @default.
- W1542333043 hasConcept C8521452 @default.
- W1542333043 hasConcept C94625758 @default.
- W1542333043 hasConcept C98045186 @default.
- W1542333043 hasConceptScore W1542333043C111919701 @default.
- W1542333043 hasConceptScore W1542333043C154945302 @default.
- W1542333043 hasConceptScore W1542333043C177264268 @default.
- W1542333043 hasConceptScore W1542333043C17744445 @default.
- W1542333043 hasConceptScore W1542333043C199360897 @default.
- W1542333043 hasConceptScore W1542333043C199539241 @default.
- W1542333043 hasConceptScore W1542333043C2776359362 @default.
- W1542333043 hasConceptScore W1542333043C41008148 @default.
- W1542333043 hasConceptScore W1542333043C50644808 @default.
- W1542333043 hasConceptScore W1542333043C8521452 @default.
- W1542333043 hasConceptScore W1542333043C94625758 @default.
- W1542333043 hasConceptScore W1542333043C98045186 @default.
- W1542333043 hasLocation W15423330431 @default.
- W1542333043 hasOpenAccess W1542333043 @default.
- W1542333043 hasPrimaryLocation W15423330431 @default.
- W1542333043 isParatext "false" @default.
- W1542333043 isRetracted "false" @default.
- W1542333043 magId "1542333043" @default.
- W1542333043 workType "dissertation" @default.