Matches in SemOpenAlex for { <https://semopenalex.org/work/W1542759513> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W1542759513 abstract "Advances in high-throughput data acquisition technologies, e.g. microarray and next-generation sequencing, have resulted in the production of a myriad amount of molecular profiling data. Consequently, there has been an increasing interest in the development of computational methods to uncover gene association patterns underlying such data, e.g. gene clustering (Medvedovic & Sivaganesan, 2002; Medvedovic et al., 2004), inference of gene association networks (Altay and Emmert-Streib, 2010; Butte & Kohane, 2000; Zhu et al., 2005), sample classification (Yeung & Bumgarner, 2005) and detection of differentially expressed genes (Sartor et al., 2006). However, outcome of any bioinformatics analysis is directly influenced by the quality of molecular profiling data, which are often contaminated with excessive noise. Replication is a frequently used strategy to account for the noise introduced at various stages of a biomedical experiment and to achieve a reliable discovery of the underlying biomolecular activities. Particularly, estimation of the correlation structure of a gene set arises naturally in many pattern analyses of replicated molecular profiling data. In both supervised and unsupervised learning, performance of various data analysis methods, e.g. linear and quadratic discriminate analysis (Hastie et al., 2009), correlation-based hierarchial clustering (Eisen et al., 1998; de Hoon et al., 2004; Yeung et al., 2003) and co-expression networking (Basso et al., 2005; Boscolo et al., 2008) relies on an accurate estimate of the true correlation structure. The existing MLE (maximum likelihood estimate) based approaches to the estimation of correlation structure do not automatically accommodate replicated measurements. Often, an ad hoc step of data preprocessing by averaging (either weighted, unweighted or something in between) is used to reduce the multivariate structure of replicated data into bivariate one (Hughes et al., 2000; Yao et al., 2008; Yeung et al., 2003). Averaging is not completely satisfactory as it creates a strong bias while reducing the variance among replicates with diverse magnitudes. Moreover, averaging may lead to a significant amount of information loss, e.g. it may wipe out important patterns of small magnitudes or cancel out opposite patterns of similar magnitudes. Thus, it is necessary to design multivariate correlation estimators by treating each replicate exclusively as a random variable. In general, the experimental design that specifies replication mechanism of a gene set may be unknown 3" @default.
- W1542759513 created "2016-06-24" @default.
- W1542759513 creator A5009256505 @default.
- W1542759513 creator A5087108082 @default.
- W1542759513 date "2011-08-23" @default.
- W1542759513 modified "2023-10-16" @default.
- W1542759513 title "Multivariate Models and Algorithms for Learning Correlation Structures from Replicated Molecular Profiling Data" @default.
- W1542759513 cites W1544729927 @default.
- W1542759513 cites W1570746489 @default.
- W1542759513 cites W1579271636 @default.
- W1542759513 cites W1839665474 @default.
- W1542759513 cites W1990512452 @default.
- W1542759513 cites W2011832962 @default.
- W1542759513 cites W2019997982 @default.
- W1542759513 cites W2025450578 @default.
- W1542759513 cites W2048298626 @default.
- W1542759513 cites W2049633694 @default.
- W1542759513 cites W2060290661 @default.
- W1542759513 cites W2061680337 @default.
- W1542759513 cites W2078149659 @default.
- W1542759513 cites W2088065495 @default.
- W1542759513 cites W2098216772 @default.
- W1542759513 cites W2102341484 @default.
- W1542759513 cites W2109178214 @default.
- W1542759513 cites W2118555734 @default.
- W1542759513 cites W2123496056 @default.
- W1542759513 cites W2124530179 @default.
- W1542759513 cites W2128985829 @default.
- W1542759513 cites W2142982954 @default.
- W1542759513 cites W2146264532 @default.
- W1542759513 cites W2150473224 @default.
- W1542759513 cites W2150926065 @default.
- W1542759513 cites W2153562609 @default.
- W1542759513 cites W2154066898 @default.
- W1542759513 cites W2161409973 @default.
- W1542759513 cites W2161467890 @default.
- W1542759513 cites W2162169788 @default.
- W1542759513 cites W2164628006 @default.
- W1542759513 cites W2168445269 @default.
- W1542759513 cites W2799002609 @default.
- W1542759513 cites W2130494035 @default.
- W1542759513 doi "https://doi.org/10.5772/19484" @default.
- W1542759513 hasPublicationYear "2011" @default.
- W1542759513 type Work @default.
- W1542759513 sameAs 1542759513 @default.
- W1542759513 citedByCount "1" @default.
- W1542759513 crossrefType "book-chapter" @default.
- W1542759513 hasAuthorship W1542759513A5009256505 @default.
- W1542759513 hasAuthorship W1542759513A5087108082 @default.
- W1542759513 hasBestOaLocation W15427595131 @default.
- W1542759513 hasConcept C11413529 @default.
- W1542759513 hasConcept C117220453 @default.
- W1542759513 hasConcept C119857082 @default.
- W1542759513 hasConcept C124101348 @default.
- W1542759513 hasConcept C153180895 @default.
- W1542759513 hasConcept C154945302 @default.
- W1542759513 hasConcept C161584116 @default.
- W1542759513 hasConcept C187191949 @default.
- W1542759513 hasConcept C199360897 @default.
- W1542759513 hasConcept C2524010 @default.
- W1542759513 hasConcept C33923547 @default.
- W1542759513 hasConcept C38180746 @default.
- W1542759513 hasConcept C41008148 @default.
- W1542759513 hasConceptScore W1542759513C11413529 @default.
- W1542759513 hasConceptScore W1542759513C117220453 @default.
- W1542759513 hasConceptScore W1542759513C119857082 @default.
- W1542759513 hasConceptScore W1542759513C124101348 @default.
- W1542759513 hasConceptScore W1542759513C153180895 @default.
- W1542759513 hasConceptScore W1542759513C154945302 @default.
- W1542759513 hasConceptScore W1542759513C161584116 @default.
- W1542759513 hasConceptScore W1542759513C187191949 @default.
- W1542759513 hasConceptScore W1542759513C199360897 @default.
- W1542759513 hasConceptScore W1542759513C2524010 @default.
- W1542759513 hasConceptScore W1542759513C33923547 @default.
- W1542759513 hasConceptScore W1542759513C38180746 @default.
- W1542759513 hasConceptScore W1542759513C41008148 @default.
- W1542759513 hasLocation W15427595131 @default.
- W1542759513 hasLocation W15427595132 @default.
- W1542759513 hasOpenAccess W1542759513 @default.
- W1542759513 hasPrimaryLocation W15427595131 @default.
- W1542759513 hasRelatedWork W1541445224 @default.
- W1542759513 hasRelatedWork W2002240385 @default.
- W1542759513 hasRelatedWork W2009706944 @default.
- W1542759513 hasRelatedWork W2588571865 @default.
- W1542759513 hasRelatedWork W2938010693 @default.
- W1542759513 hasRelatedWork W3159770711 @default.
- W1542759513 hasRelatedWork W4225307033 @default.
- W1542759513 hasRelatedWork W4249941676 @default.
- W1542759513 hasRelatedWork W4250948127 @default.
- W1542759513 hasRelatedWork W2602070629 @default.
- W1542759513 isParatext "false" @default.
- W1542759513 isRetracted "false" @default.
- W1542759513 magId "1542759513" @default.
- W1542759513 workType "book-chapter" @default.