Matches in SemOpenAlex for { <https://semopenalex.org/work/W1543575680> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W1543575680 endingPage "315" @default.
- W1543575680 startingPage "304" @default.
- W1543575680 abstract "Risk management for wastewater treatment and reuse have led to growing interest in understanding and optimising pathogen reduction during biological treatment processes. However, modelling pathogen reduction is often limited by poor characterization of the relationships between variables and incomplete knowledge of removal mechanisms. The aim of this paper was to assess the applicability of Bayesian belief network models to represent associations between pathogen reduction, and operating conditions and monitoring parameters and predict AS performance. Naïve Bayes and semi-naïve Bayes networks were constructed from an activated sludge dataset including operating and monitoring parameters, and removal efficiencies for two pathogens (native Giardia lamblia and seeded Cryptosporidium parvum) and five native microbial indicators (F-RNA bacteriophage, Clostridium perfringens, Escherichia coli, coliforms and enterococci). First we defined the Bayesian network structures for the two pathogen log10 reduction values (LRVs) class nodes discretized into two states (< and ≥ 1 LRV) using two different learning algorithms. Eight metrics, such as Prediction Accuracy (PA) and Area Under the receiver operating Curve (AUC), provided a comparison of model prediction performance, certainty and goodness of fit. This comparison was used to select the optimum models. The optimum Tree Augmented naïve models predicted removal efficiency with high AUC when all system parameters were used simultaneously (AUCs for C. parvum and G. lamblia LRVs of 0.95 and 0.87 respectively). However, metrics for individual system parameters showed only the C. parvum model was reliable. By contrast individual parameters for G. lamblia LRV prediction typically obtained low AUC scores (AUC < 0.81). Useful predictors for C. parvum LRV included solids retention time, turbidity and total coliform LRV. The methodology developed appears applicable for predicting pathogen removal efficiency in water treatment systems generally." @default.
- W1543575680 created "2016-06-24" @default.
- W1543575680 creator A5003516238 @default.
- W1543575680 creator A5031916272 @default.
- W1543575680 creator A5036441572 @default.
- W1543575680 creator A5044778185 @default.
- W1543575680 creator A5058404436 @default.
- W1543575680 date "2015-11-01" @default.
- W1543575680 modified "2023-10-16" @default.
- W1543575680 title "Modelling pathogen log10 reduction values achieved by activated sludge treatment using naïve and semi naïve Bayes network models" @default.
- W1543575680 cites W1568654892 @default.
- W1543575680 cites W184698331 @default.
- W1543575680 cites W1974772072 @default.
- W1543575680 cites W1983605995 @default.
- W1543575680 cites W1988047145 @default.
- W1543575680 cites W1992169312 @default.
- W1543575680 cites W2007528120 @default.
- W1543575680 cites W2059407888 @default.
- W1543575680 cites W2075255587 @default.
- W1543575680 cites W2079087023 @default.
- W1543575680 cites W2091543856 @default.
- W1543575680 cites W2111829182 @default.
- W1543575680 cites W2133990480 @default.
- W1543575680 cites W2163166770 @default.
- W1543575680 cites W2417446144 @default.
- W1543575680 cites W4236354166 @default.
- W1543575680 doi "https://doi.org/10.1016/j.watres.2015.08.035" @default.
- W1543575680 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26342914" @default.
- W1543575680 hasPublicationYear "2015" @default.
- W1543575680 type Work @default.
- W1543575680 sameAs 1543575680 @default.
- W1543575680 citedByCount "19" @default.
- W1543575680 countsByYear W15435756802016 @default.
- W1543575680 countsByYear W15435756802017 @default.
- W1543575680 countsByYear W15435756802018 @default.
- W1543575680 countsByYear W15435756802019 @default.
- W1543575680 countsByYear W15435756802020 @default.
- W1543575680 countsByYear W15435756802021 @default.
- W1543575680 countsByYear W15435756802022 @default.
- W1543575680 countsByYear W15435756802023 @default.
- W1543575680 crossrefType "journal-article" @default.
- W1543575680 hasAuthorship W1543575680A5003516238 @default.
- W1543575680 hasAuthorship W1543575680A5031916272 @default.
- W1543575680 hasAuthorship W1543575680A5036441572 @default.
- W1543575680 hasAuthorship W1543575680A5044778185 @default.
- W1543575680 hasAuthorship W1543575680A5058404436 @default.
- W1543575680 hasConcept C105795698 @default.
- W1543575680 hasConcept C107673813 @default.
- W1543575680 hasConcept C119857082 @default.
- W1543575680 hasConcept C154945302 @default.
- W1543575680 hasConcept C207201462 @default.
- W1543575680 hasConcept C2777795018 @default.
- W1543575680 hasConcept C33724603 @default.
- W1543575680 hasConcept C33923547 @default.
- W1543575680 hasConcept C41008148 @default.
- W1543575680 hasConcept C86803240 @default.
- W1543575680 hasConcept C89423630 @default.
- W1543575680 hasConceptScore W1543575680C105795698 @default.
- W1543575680 hasConceptScore W1543575680C107673813 @default.
- W1543575680 hasConceptScore W1543575680C119857082 @default.
- W1543575680 hasConceptScore W1543575680C154945302 @default.
- W1543575680 hasConceptScore W1543575680C207201462 @default.
- W1543575680 hasConceptScore W1543575680C2777795018 @default.
- W1543575680 hasConceptScore W1543575680C33724603 @default.
- W1543575680 hasConceptScore W1543575680C33923547 @default.
- W1543575680 hasConceptScore W1543575680C41008148 @default.
- W1543575680 hasConceptScore W1543575680C86803240 @default.
- W1543575680 hasConceptScore W1543575680C89423630 @default.
- W1543575680 hasFunder F4320310740 @default.
- W1543575680 hasLocation W15435756801 @default.
- W1543575680 hasLocation W15435756802 @default.
- W1543575680 hasOpenAccess W1543575680 @default.
- W1543575680 hasPrimaryLocation W15435756801 @default.
- W1543575680 hasRelatedWork W1890372978 @default.
- W1543575680 hasRelatedWork W2058612270 @default.
- W1543575680 hasRelatedWork W2093606165 @default.
- W1543575680 hasRelatedWork W2112163941 @default.
- W1543575680 hasRelatedWork W2117061361 @default.
- W1543575680 hasRelatedWork W2525694114 @default.
- W1543575680 hasRelatedWork W2543496963 @default.
- W1543575680 hasRelatedWork W4300966211 @default.
- W1543575680 hasRelatedWork W773320669 @default.
- W1543575680 hasRelatedWork W901658440 @default.
- W1543575680 hasVolume "85" @default.
- W1543575680 isParatext "false" @default.
- W1543575680 isRetracted "false" @default.
- W1543575680 magId "1543575680" @default.
- W1543575680 workType "article" @default.