Matches in SemOpenAlex for { <https://semopenalex.org/work/W1544095575> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W1544095575 abstract "With the rise of the Big Data paradigm new tasks for prediction models appeared. In addition to the volume problem of such data sets nonlinearity becomes important, as the more detailed data sets contain also more comprehensive information, e.g. about non regular seasonal or cyclical movements as well as jumps in time series. This essay compares two nonlinear methods for predicting a high frequency time series, the USD/Euro exchange rate. The first method investigated is Autoregressive Neural Network Processes (ARNN), a neural network based nonlinear extension of classical autoregressive process models from time series analysis (see Dietz 2011). Its advantage is its simple but scalable time series process model architecture, which is able to include all kinds of nonlinearities based on the universal approximation theorem of Hornik, Stinchcombe and White 1989 and the extensions of Hornik 1993. However, restrictions related to the numeric estimation procedures limit the flexibility of the model. The alternative is a Support Vector Machine Model (SVM, Vapnik 1995). The two methods compared have different approaches of error minimization (Empirical error minimization at the ARNN vs. structural error minimization at the SVM). Our new finding is, that time series data classified as “Big Data” need new methods for prediction. Estimation and prediction was performed using the statistical programming language R. Besides prediction results we will also discuss the impact of Big Data on data preparation and model validation steps. Normal 0 21 false false false DE X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable{mso-style-name:Normale Tabelle;mso-tstyle-rowband-size:0;mso-tstyle-colband-size:0;mso-style-noshow:yes;mso-style-priority:99;mso-style-parent:;mso-padding-alt:0cm 5.4pt 0cm 5.4pt;mso-para-margin:0cm;mso-para-margin-bottom:.0001pt;mso-pagination:widow-orphan;font-size:10.0pt;font-family:Times New Roman,serif;}" @default.
- W1544095575 created "2016-06-24" @default.
- W1544095575 creator A5061714773 @default.
- W1544095575 date "2013-12-31" @default.
- W1544095575 modified "2023-09-24" @default.
- W1544095575 title "Big Data impacts on stochastic Forecast Models: Evidence from FX time series" @default.
- W1544095575 cites W1536447791 @default.
- W1544095575 cites W1588163064 @default.
- W1544095575 cites W1595615370 @default.
- W1544095575 cites W1976557506 @default.
- W1544095575 cites W1984367183 @default.
- W1544095575 cites W1999996900 @default.
- W1544095575 cites W2144013703 @default.
- W1544095575 cites W2156909104 @default.
- W1544095575 cites W2313953460 @default.
- W1544095575 cites W3124166995 @default.
- W1544095575 cites W3146803896 @default.
- W1544095575 cites W3175461480 @default.
- W1544095575 cites W740415 @default.
- W1544095575 cites W2114001875 @default.
- W1544095575 cites W2744796818 @default.
- W1544095575 doi "https://doi.org/10.18187/pjsor.v9i3.587" @default.
- W1544095575 hasPublicationYear "2013" @default.
- W1544095575 type Work @default.
- W1544095575 sameAs 1544095575 @default.
- W1544095575 citedByCount "0" @default.
- W1544095575 crossrefType "journal-article" @default.
- W1544095575 hasAuthorship W1544095575A5061714773 @default.
- W1544095575 hasBestOaLocation W15440955751 @default.
- W1544095575 hasConcept C11413529 @default.
- W1544095575 hasConcept C119857082 @default.
- W1544095575 hasConcept C121332964 @default.
- W1544095575 hasConcept C12267149 @default.
- W1544095575 hasConcept C124101348 @default.
- W1544095575 hasConcept C126255220 @default.
- W1544095575 hasConcept C143724316 @default.
- W1544095575 hasConcept C147764199 @default.
- W1544095575 hasConcept C149782125 @default.
- W1544095575 hasConcept C151406439 @default.
- W1544095575 hasConcept C151730666 @default.
- W1544095575 hasConcept C154507838 @default.
- W1544095575 hasConcept C154945302 @default.
- W1544095575 hasConcept C158622935 @default.
- W1544095575 hasConcept C159877910 @default.
- W1544095575 hasConcept C33923547 @default.
- W1544095575 hasConcept C41008148 @default.
- W1544095575 hasConcept C50644808 @default.
- W1544095575 hasConcept C62520636 @default.
- W1544095575 hasConcept C75684735 @default.
- W1544095575 hasConcept C86803240 @default.
- W1544095575 hasConceptScore W1544095575C11413529 @default.
- W1544095575 hasConceptScore W1544095575C119857082 @default.
- W1544095575 hasConceptScore W1544095575C121332964 @default.
- W1544095575 hasConceptScore W1544095575C12267149 @default.
- W1544095575 hasConceptScore W1544095575C124101348 @default.
- W1544095575 hasConceptScore W1544095575C126255220 @default.
- W1544095575 hasConceptScore W1544095575C143724316 @default.
- W1544095575 hasConceptScore W1544095575C147764199 @default.
- W1544095575 hasConceptScore W1544095575C149782125 @default.
- W1544095575 hasConceptScore W1544095575C151406439 @default.
- W1544095575 hasConceptScore W1544095575C151730666 @default.
- W1544095575 hasConceptScore W1544095575C154507838 @default.
- W1544095575 hasConceptScore W1544095575C154945302 @default.
- W1544095575 hasConceptScore W1544095575C158622935 @default.
- W1544095575 hasConceptScore W1544095575C159877910 @default.
- W1544095575 hasConceptScore W1544095575C33923547 @default.
- W1544095575 hasConceptScore W1544095575C41008148 @default.
- W1544095575 hasConceptScore W1544095575C50644808 @default.
- W1544095575 hasConceptScore W1544095575C62520636 @default.
- W1544095575 hasConceptScore W1544095575C75684735 @default.
- W1544095575 hasConceptScore W1544095575C86803240 @default.
- W1544095575 hasLocation W15440955751 @default.
- W1544095575 hasOpenAccess W1544095575 @default.
- W1544095575 hasPrimaryLocation W15440955751 @default.
- W1544095575 hasRelatedWork W115873954 @default.
- W1544095575 hasRelatedWork W1480724561 @default.
- W1544095575 hasRelatedWork W1537908023 @default.
- W1544095575 hasRelatedWork W1541737413 @default.
- W1544095575 hasRelatedWork W1779692528 @default.
- W1544095575 hasRelatedWork W1968208540 @default.
- W1544095575 hasRelatedWork W1983729683 @default.
- W1544095575 hasRelatedWork W2003706483 @default.
- W1544095575 hasRelatedWork W2038925499 @default.
- W1544095575 hasRelatedWork W2067717190 @default.
- W1544095575 hasRelatedWork W2078301133 @default.
- W1544095575 hasRelatedWork W2083132668 @default.
- W1544095575 hasRelatedWork W2115543743 @default.
- W1544095575 hasRelatedWork W2125205396 @default.
- W1544095575 hasRelatedWork W2146654452 @default.
- W1544095575 hasRelatedWork W2341468648 @default.
- W1544095575 hasRelatedWork W2387240139 @default.
- W1544095575 hasRelatedWork W2616861977 @default.
- W1544095575 hasRelatedWork W84499868 @default.
- W1544095575 hasRelatedWork W1603258828 @default.
- W1544095575 isParatext "false" @default.
- W1544095575 isRetracted "false" @default.
- W1544095575 magId "1544095575" @default.
- W1544095575 workType "article" @default.