Matches in SemOpenAlex for { <https://semopenalex.org/work/W1544170143> ?p ?o ?g. }
- W1544170143 endingPage "14" @default.
- W1544170143 startingPage "7" @default.
- W1544170143 abstract "The recent development of high-throughput systems for genotyping SNP in Eukaryote has led to an extraordinary amount of research activity, particularly in areas such as whole-genome selection of livestock and genome-wide association studies for detection of quantitative trait. Recent technological advances allow us to rapidly genotype more than 10 million SNPs in an individual, accounting for 10% of the estimated number of common SNPs (more than 1% minor allele frequency) across the population. As a result of missing SNPs, true associations might be missed if the causal SNP is not genotyped or if the causal variant is an unknown variant. SNP imputation is important in reducing the cost of re-sequencing and when genotyping all considered animals may be too costly and sometimes not feasible because DNA may not be available for all animals. Computational algorithms and statistical methods have been developed to account for some of the unobserved variants. The main idea behind these methods is based on the observation that SNPs in close proximity to one another in the genome tend to be correlated, or in non-random association (linkage disequilibrium). “Several articles have described comparisons of imputation methods with respect to computational efficiency and the accuracy of results”. Consequently, we perceived a substantial need to proposing a new technique for SNP Imputation with applying linear Discrimination and Clustering Analysis Algorithms. To evaluate the factors potentially affecting imputation accuracy rates (ARs), we used simulated data sets to investigate the effects of Linkage disequilibrium (LD), Minor allele frequency (MAF) of un-typed SNPs, marker density (MD), reference sample size (n) and the different numbers of SNPs in every haplotype block, in imputation accuracy rate (AR) and the performance of linear discriminant analysis and clustering Analysis as a SNP imputation method. In optimal state of genotype data (in High LD, low MAF, and high density haplotype blokes) both methods (Clustering and discrimination) were working efficiently, and the accuracy can reached 89 %." @default.
- W1544170143 created "2016-06-24" @default.
- W1544170143 creator A5001050056 @default.
- W1544170143 creator A5039165370 @default.
- W1544170143 creator A5091206593 @default.
- W1544170143 date "2014-06-22" @default.
- W1544170143 modified "2023-09-23" @default.
- W1544170143 title "Genotype imputation based on discriminant and cluster analysis" @default.
- W1544170143 cites W1497391961 @default.
- W1544170143 cites W1530010412 @default.
- W1544170143 cites W1550443206 @default.
- W1544170143 cites W1573084488 @default.
- W1544170143 cites W1620680570 @default.
- W1544170143 cites W1975120776 @default.
- W1544170143 cites W2016381774 @default.
- W1544170143 cites W2052696562 @default.
- W1544170143 cites W2057930084 @default.
- W1544170143 cites W2086220442 @default.
- W1544170143 cites W2087196505 @default.
- W1544170143 cites W2096335861 @default.
- W1544170143 cites W2100358124 @default.
- W1544170143 cites W2118502261 @default.
- W1544170143 cites W2127841934 @default.
- W1544170143 cites W2157752701 @default.
- W1544170143 cites W2158672154 @default.
- W1544170143 cites W2172074277 @default.
- W1544170143 cites W2497171922 @default.
- W1544170143 cites W2610934626 @default.
- W1544170143 cites W2613161123 @default.
- W1544170143 cites W2802618454 @default.
- W1544170143 cites W2966207845 @default.
- W1544170143 cites W60275550 @default.
- W1544170143 hasPublicationYear "2014" @default.
- W1544170143 type Work @default.
- W1544170143 sameAs 1544170143 @default.
- W1544170143 citedByCount "0" @default.
- W1544170143 crossrefType "journal-article" @default.
- W1544170143 hasAuthorship W1544170143A5001050056 @default.
- W1544170143 hasAuthorship W1544170143A5039165370 @default.
- W1544170143 hasAuthorship W1544170143A5091206593 @default.
- W1544170143 hasConcept C104317684 @default.
- W1544170143 hasConcept C105795698 @default.
- W1544170143 hasConcept C106208931 @default.
- W1544170143 hasConcept C135763542 @default.
- W1544170143 hasConcept C139275648 @default.
- W1544170143 hasConcept C144024400 @default.
- W1544170143 hasConcept C149923435 @default.
- W1544170143 hasConcept C153209595 @default.
- W1544170143 hasConcept C157410074 @default.
- W1544170143 hasConcept C163691529 @default.
- W1544170143 hasConcept C186413461 @default.
- W1544170143 hasConcept C2908647359 @default.
- W1544170143 hasConcept C31467283 @default.
- W1544170143 hasConcept C33923547 @default.
- W1544170143 hasConcept C35605836 @default.
- W1544170143 hasConcept C37463918 @default.
- W1544170143 hasConcept C54355233 @default.
- W1544170143 hasConcept C55060382 @default.
- W1544170143 hasConcept C58041806 @default.
- W1544170143 hasConcept C70721500 @default.
- W1544170143 hasConcept C86803240 @default.
- W1544170143 hasConcept C9357733 @default.
- W1544170143 hasConceptScore W1544170143C104317684 @default.
- W1544170143 hasConceptScore W1544170143C105795698 @default.
- W1544170143 hasConceptScore W1544170143C106208931 @default.
- W1544170143 hasConceptScore W1544170143C135763542 @default.
- W1544170143 hasConceptScore W1544170143C139275648 @default.
- W1544170143 hasConceptScore W1544170143C144024400 @default.
- W1544170143 hasConceptScore W1544170143C149923435 @default.
- W1544170143 hasConceptScore W1544170143C153209595 @default.
- W1544170143 hasConceptScore W1544170143C157410074 @default.
- W1544170143 hasConceptScore W1544170143C163691529 @default.
- W1544170143 hasConceptScore W1544170143C186413461 @default.
- W1544170143 hasConceptScore W1544170143C2908647359 @default.
- W1544170143 hasConceptScore W1544170143C31467283 @default.
- W1544170143 hasConceptScore W1544170143C33923547 @default.
- W1544170143 hasConceptScore W1544170143C35605836 @default.
- W1544170143 hasConceptScore W1544170143C37463918 @default.
- W1544170143 hasConceptScore W1544170143C54355233 @default.
- W1544170143 hasConceptScore W1544170143C55060382 @default.
- W1544170143 hasConceptScore W1544170143C58041806 @default.
- W1544170143 hasConceptScore W1544170143C70721500 @default.
- W1544170143 hasConceptScore W1544170143C86803240 @default.
- W1544170143 hasConceptScore W1544170143C9357733 @default.
- W1544170143 hasIssue "48" @default.
- W1544170143 hasLocation W15441701431 @default.
- W1544170143 hasOpenAccess W1544170143 @default.
- W1544170143 hasPrimaryLocation W15441701431 @default.
- W1544170143 hasRelatedWork W128851173 @default.
- W1544170143 hasRelatedWork W1482077247 @default.
- W1544170143 hasRelatedWork W1539593569 @default.
- W1544170143 hasRelatedWork W1955438083 @default.
- W1544170143 hasRelatedWork W1987766522 @default.
- W1544170143 hasRelatedWork W1993597570 @default.
- W1544170143 hasRelatedWork W2020996707 @default.
- W1544170143 hasRelatedWork W2046324375 @default.
- W1544170143 hasRelatedWork W2057930084 @default.
- W1544170143 hasRelatedWork W2059487150 @default.