Matches in SemOpenAlex for { <https://semopenalex.org/work/W1544624871> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W1544624871 endingPage "394" @default.
- W1544624871 startingPage "375" @default.
- W1544624871 abstract "Abstract This paper presents the developments and applications of a turbulence depth-averaged (depth-integrated) two-equation closure model, symbolised by k – w model ( k : depth-averaged turbulent kinetic energy parameter; w : depth-averaged vorticity fluctuation parameter of turbulence). The k – w model, different from the well-known turbulence depth-averaged k – e model ( e : depth-averaged dissipation rate parameter of turbulent kinetic energy), was stemmed from the revised version of k–w model (k: turbulent kinetic energy; w: time-mean-square vorticity fluctuations of turbulence). In the model, the depth-averaged partial differential k – and w -equations are solved with the mean flow equations together in order to determine the distribution of turbulence eddy viscosity and diffusivity as well as other physical variables. Three computational examples, two steady and one unsteady, have been carried out for investigating and applying the established model. They are: (1) the side jet with temperature difference is discharged vertically into a rectangular open channel; (2) the cooling water is simultaneously discharged from three submerged outlets of an electric power plant into the Rhine River and (3) the waste-heat and pollutants are discharged from seven sources, two of which were submerged, into the south estuary of the Yangtse River. In these three examples, the distributions and variations of velocity, temperature and concentration fields were numerically simulated and the velocity and temperature fields computed by different turbulence two-equation closure models also compared with experimental results and field data. It was found that the results computed by k – w model are closer to experimental data than those computed by using the k – e model, when the width or flow rate of the side-discharge outlet is relatively small to compare the corresponding width or flow rate of cross-section flow, a situation frequently encountered in environmental engineering. The computed temperature distributions by using k – w model, k – e model as well as other simple, low-order turbulence model are different; the results calculated by depth-averaged k – w model are better than those computed by using k – e model and much better than those from simple constant coefficient diffusivity model even at the lower reach far from the discharging outlet. The numerical simulation by use of the advanced turbulence two-equation k – w model provided indispensable information for the tidal patterns and the distributions of depth-averaged temperature, the chemical oxygen demand (COD) concentration and biochemical oxygen demand (BOD) concentration and is much more reliable than those by use of the phenomenological algebraic formulae of eddy viscosity and diffusivity." @default.
- W1544624871 created "2016-06-24" @default.
- W1544624871 creator A5015584516 @default.
- W1544624871 creator A5022636792 @default.
- W1544624871 date "2001-05-01" @default.
- W1544624871 modified "2023-09-27" @default.
- W1544624871 title "Depth-averaged turbulence model and applications" @default.
- W1544624871 cites W1498830134 @default.
- W1544624871 cites W1968908648 @default.
- W1544624871 cites W1972194557 @default.
- W1544624871 cites W1981401379 @default.
- W1544624871 cites W2009352359 @default.
- W1544624871 cites W2012568102 @default.
- W1544624871 cites W2030375769 @default.
- W1544624871 cites W2036139402 @default.
- W1544624871 cites W2053786161 @default.
- W1544624871 doi "https://doi.org/10.1016/s0965-9978(00)00100-9" @default.
- W1544624871 hasPublicationYear "2001" @default.
- W1544624871 type Work @default.
- W1544624871 sameAs 1544624871 @default.
- W1544624871 citedByCount "18" @default.
- W1544624871 countsByYear W15446248712012 @default.
- W1544624871 countsByYear W15446248712013 @default.
- W1544624871 countsByYear W15446248712014 @default.
- W1544624871 countsByYear W15446248712020 @default.
- W1544624871 countsByYear W15446248712021 @default.
- W1544624871 countsByYear W15446248712022 @default.
- W1544624871 crossrefType "journal-article" @default.
- W1544624871 hasAuthorship W1544624871A5015584516 @default.
- W1544624871 hasAuthorship W1544624871A5022636792 @default.
- W1544624871 hasConcept C121332964 @default.
- W1544624871 hasConcept C121864883 @default.
- W1544624871 hasConcept C150711758 @default.
- W1544624871 hasConcept C189223162 @default.
- W1544624871 hasConcept C196558001 @default.
- W1544624871 hasConcept C41008148 @default.
- W1544624871 hasConcept C57879066 @default.
- W1544624871 hasConceptScore W1544624871C121332964 @default.
- W1544624871 hasConceptScore W1544624871C121864883 @default.
- W1544624871 hasConceptScore W1544624871C150711758 @default.
- W1544624871 hasConceptScore W1544624871C189223162 @default.
- W1544624871 hasConceptScore W1544624871C196558001 @default.
- W1544624871 hasConceptScore W1544624871C41008148 @default.
- W1544624871 hasConceptScore W1544624871C57879066 @default.
- W1544624871 hasIssue "5" @default.
- W1544624871 hasLocation W15446248711 @default.
- W1544624871 hasOpenAccess W1544624871 @default.
- W1544624871 hasPrimaryLocation W15446248711 @default.
- W1544624871 hasRelatedWork W1953713194 @default.
- W1544624871 hasRelatedWork W2046781374 @default.
- W1544624871 hasRelatedWork W2055622254 @default.
- W1544624871 hasRelatedWork W2151728674 @default.
- W1544624871 hasRelatedWork W2250088632 @default.
- W1544624871 hasRelatedWork W2287966484 @default.
- W1544624871 hasRelatedWork W2371132969 @default.
- W1544624871 hasRelatedWork W2378601565 @default.
- W1544624871 hasRelatedWork W4206216482 @default.
- W1544624871 hasRelatedWork W2468574415 @default.
- W1544624871 hasVolume "32" @default.
- W1544624871 isParatext "false" @default.
- W1544624871 isRetracted "false" @default.
- W1544624871 magId "1544624871" @default.
- W1544624871 workType "article" @default.